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1 INTRODUCTION

1.1 Objective of this Benchmark

Theme C concerns the analysis of the measurement results for the radial crest
displacements of Schlegeis Arch Dam.
The data provided are:

+ Simplified 3D FE-model of the dam,

* Time histories of water level, ambient temperature and concrete temperatures for the
period 1992 to 2000,

¢ Time history of radial crest displacement for the period 1992 to 1998.
The requested results are:

¢ The formula and the parameters governing the radial crest displacements in terms of
water level (actual and history) and temperature and

* A prognosis of the radial crest displacements for the period 1999 to 2000

With the formula and the parameters it should be possible to separate temperature effects
and the influence of the water load and to identify the elastic, viscoelastic and plastic
portions of the observed radial crest displacements.

The analysis can be based on the results of a structural analysis of the dam by means of
the provided FE-model, on a statistical analysis of the instrument readings or on a
combination of structural and statistical analysis.

1.2 General Information about Schlegeis Dam

1.2.1 Description of Dam

Schlegeis arch dam was constructed between 1969 and 1971. It is a double curvature arch/
gravity dam with a crest length/dam height ratio of 5.5.

The foundation of the dam consists of fairly uniform granitic mica gneiss. Its plane of
schistosity strikes approximately parallel to the right bank abutment and has a very steep
dip towards downstream. The dam consists of 43 blocks, each 17 m wide. It is provided
with 4 horizontal inspection galleries and the base gallery located at the foundation rock
(see Figure 1 and 2).

The upstream grout curtain originally consisted of a vertical main curtain beneath the
dam base extending to a depth of 50m, and a shallower secondary grout curtain extending
from the base gallery and inclined towards the upstream (see Figure 2).

The main technical data are:

Crest elevation 1783m a.s.l.
Dam height 131m
Crest length 725m
Crest thickness 9m
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Base thickness 34m
Concrete volume 960 000m?
Top water level 1782m a.s.l.
Drawdown level ~ 1680m a.s.l.
Live storage 127 hm?

When top storage level was first reached in 1973, seepage rates of 2501/s were measured
in the middle part of the base gallery. This water inflow was due to cracking in the
foundation rock caused by tensile stresses. To reduce this amount of seepage water a cut
off wall was built in total of eleven blocks. Since then the seepage rate at top storage level
has not exceeded 25 I/s.

1.2.2 Instrumentation, Measurement

Because of the large span in relation to its height the dam is monitored with a large
number of instruments. The most important surveillance instruments are five shafts with
pendulums (see Figure 1). In the following only the measurements concerning the
Benchmark Workshop are described.

P

¢ Pendulums

In this benchmark we will consider the pendulums in block 0 only. The radial movement
of the crest of the dam relative to the point of reference 80 m below foundation has to be
analysed.

Because of the vertical curvature of the dam it was necessary to install two pendulums
(one inverted pendulum fixed 80 m below the dam base and one direct pendulum fixed at
the dam crest) to obtain the crest displacement. The provided values for this benchmark-
workshop are the crest displacements for the period 1992 to 1998, one value per day (at
09:00 MET).

e Concrete Temperatures

Concrete temperatures are measured daily in block 0 in two horizons, elevation 1750.65
m and 1677.15 m. In each horizon three thermometers are installed (see Figure 2 for
details). The provided values for this benchmark-workshop are those for 09:00 MET, for
the period 1992 to 2000.

* Air Temperature

Air temperatures are measured near the dam crest at each full hour. This 24 values per day
(from 00:00 until 23:00) are used to calculate unweighted arithmetic mean values which
are provided for the period 1992 to 2000.

o Waterlevel

For this Benchmark Workshop the waterlevel at 09:00 MET is provided every day for the
period 1992 to 2000.
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Figure 1: Overview of the Schlegeis Arch Dam
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Figure 2: Central Cross Section
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2 ANALYSIS DATA

The analysis data are collected in the following files:
MONIT.TXT  measured data
BRICK.TXT brick elements (20 node elements)
C3D27.TXT brick elements (27 node elements)
NODE.TXT nodes, x-, y-, z-coordinates
N_COINC.TXT coincident nodes in dam-rock interface
WEDGE.TXT  wedge elements (15 node elements)

2.1 Monitoring Data

(see Section 2.1)
(see Subsection 2.2.1)
(see Subsection 2.2.1)
(see Subsection 2.2.1)
(see Section 2.2)
(see Subsection 2.2.1)

The monitoring data are provided in textfile ‘MONIT.TXT*. The file represents a table
with 11 columns and 3288 data lines plus three heading lines. The table is sorted by date.
Data records start at 1992-01-01 and end 2000-12-31. The recordings of pendulum-
measurements are removed from the dataset from 1999-01-01 until 2000-12-31 (These

values should be prognosticated).

2.1.1 Description of Columns in ‘MONIT. TXT*

Please, see also the description under point 1.2.2
The unit for all temperatures is degrees Celsius.

* Column 1 (COUNT)

This values represent a counter, starting with ‘1¢ in the first data line. It increments

by 1 each day.
* Column 2 (DATE)

Here you can find the date of monitoring in the format YYMMDD (f. e. 001222

means 2000-December-22).
* Column 3 (W_LEVEL)

In this column you find the 9.00 (MET) values for the water level in meter a. s. 1.

* Column 4 (PENDULUM)

The pendulum values for block O(radial crest displacement), measured at 9.00 MET

in millimeter. This values are provided until 1998,December 31 only.

e Column 5 (T_H12_UP)

Concrete temperature in horizon MH12. Location is 1.5 m from upstream face (see

figure 2, t_up).
* Column 6 (T_H12_MI)

Concrete temperature in horizon MHI12. Location is middle of cross-section (see

figure 2, t_mi).
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* Column 7 (T_H12_DO)
Concrete temperature in horizon MH12. Location is 1.5 m from downstream face
(see figure 2, t_do).

* Column 8 (T_H15_UP)
Concrete temperature in horizon MH15. Location is 1.5 m from upstream face (see
figure 2, t_up).

e Column 9 (T_HI15_MI)
Concrete temperature in horizon MH15. Location is middle of cross-section (see
figure 2, t_mi).

e Column 10 (T_H15_DO)
Concrete temperature in horizon MH15. Location is 1.5 m from downstream face
(see figure 2, t_do).

* Column 11 (T_AIR_M)
Mean Value of air temperature (see also 1.2.2)

2.2 FE-Model (optional)

It is the choice of each participant either to perform a FE-analysis for the prediction of the
crest displacements or to perform a statistical analysis with the available data set or to do
both, static and statistical analysis.

If it is decided to perform a FE-analysis the necessary data for the model under this
point of the description can be found.

A linear or nonlinear version of the FE model can be used. The nonlinear version is
realized by using the provided double nodes to include “contact-elements” between dam
and rock. If the linear version is used, a simple way to do that is to join the double nodes
by suitable conditions (the file "N_COINC.TXT’ with the corresponding coincident
nodes is included in the data files for this reason).

2.2.1 Description of Provided FE-Model
* Basic data

The mesh has about 6.000 nodes resulting into around 18.000 degrees of freedom. The
nodes (node numbers, x-, y-, z-coordinates) can be found in file "NODE.TXT’. Please
note, that from z-coordinates 1.000 m is subtracted to get more convenient numbers.

Elements Nodes
Dam 246 1369 + 108
Rock 896 4713 + 108
Interface 54

Table 1: Basic Data - Finite Element Mesh
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Figure 3: Downstream View of the Finite Element mesh

Three elements are foreseen in radial direction for the dam (see Figure 7).
The elements of the FE-mesh are quadratic, isoparametric 20 and 15 node volume
elements (see Figure 4).

27 nodes brick element Hexahedron (brick) Wedge (triangular prism)
C3D27 element clement

Figure 4: Node Order of the Brick and Wedge Element

There are three files describing elements. In file "BRICK.TXT’ the element number
followed by 20 node numbers ordered by the scheme in Figure 4 can be found. File
"WEDGE.TXT’ gives element numbers plus 15 node numbers for wedge elements. File
"C3D27.TXT’ is a special format (for example used by ABAQUS) and describes brick
elements with 27 nodes (20 nodes like normal hexahedron element plus 6 midsurface
nodes plus 1 midvolume node). Normal brick elements can be created from this elements
by deleting the last seven node numbers for each element.
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e Material Parameters

For the rock foundation an orthotropic material behaviour is assumed. The rock is
assumed massless during analysis steps. The plane of schistosity is shown in Figure 5. The
rock consists of Granite-Gneiss with a schistosity of 340/75 Degrees related to Gauss-
Kriiger-System (29.98/75 Degrees relative to local Y-axis).

Figure 5: Description of Schistosity

The dam is modeled with isotropic material behaviour.

Young’s modulus E [GPa] (for rock Eyy)

Young’s modulus E [GPa] (for rock E_1)

Poisson ratio v

Density [kg/m’]

Oy

Rock | Concrete
30 2:5
10
017 0.17
2400
8.107°

Table 2: Material Parameters

The joint behaviour is described by the normal to shear stress relation (only for nonlinear

analysis) shown in Figure 6.

TA

friction angle p=45°
no tensile stresses allowed
for being transmitted

e

Figure 6: Friction Law
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* Loading

The loadings to be considered are upon participants choice. Some arbitrary examples are
given:

Selfweight of the dam

Water load for full or partially full reservoir
Uplift pressure for full or partially full reservoir
Temperature.

It is suggested to apply the selfweight of the dam on individual concrete blocks (open
block joints). Water load and uplift pressure can be as indicated in Figure 7.

Normal water level 1782.0

U A

b«

Vo 0 5 it

©
Uplift Pressure &

Figure 7: Dam Model, Water and Uplift Loading

In Figure 8 the upstream face of the dam is displayed. For each element the element
number and the relevant face number is represented (face numbers are related to definition
in ABAQUS).

In Figure 9 the element numbers and face numbers relevant for upstream definition are
shown.
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Figure 8: Element Numbers and Faces on Upstream Face
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2.2.2 System Requirements for FE-calculation
The FE calculation (for example with ABAQUS) needed:

255MB ... Scratch file sizes
I0MB ................. Result file (one step only)
200MB ............... Memory

3 RESULTS

3.1 Required Output

The requested results are

¢ The formula and the parameters governing the radial crest displacements in terms of
water level (actual and history) and temperature and

« A prognosis of the radial crest displacements for the period 1999 to 2000

The formula for the crest displacement as a function of water level and temperature can
be of any type, e.g. polynomial. A separation of the contribution of the water load and of
the temperature variation on the crest displacement should be possible.

The prognosticated values for the crest displacement for the period 1999 to 2000 should
be provided in the same format as the values given.

Theme C - Interpretation of Measurement Results page 13



Sixth ICOLD Benchmark Workshop on Numerical Analysis of Dams

S. Bonelli, H. F. Felix (will not be presented by the authors)
Delayed response analysis of temperature effect

Austria Salzburg, 17.10.-19.10.2001



DELAYED RESPONSE ANALYSIS OF TEMPERATURE EFFECT

S.BONELLI'2, H.FELIX2
I LMA-CNRS, Marseille, France
2 Cemagref, Aix-en-Provence, France

ABSTRACT: Long series of monitoring data are obtained during the routine operation
of a dam. The traditionnal approach for performing data analysis is the linear statistical
regression. This paper presents the application of auto regressive modelling techniques
for performing delay analysis on air temperature measurements. The results are
compared to seasonal analysis and direct analysis of concrete temperature
measurements. There was no real difference between the results of the three models
concerning the analysis of the measurements for the radial crest displacement of the
Schlegeis arch dam.

1 INTRODUCTION

For monitoring data analysis, three families of deterministic models are commonly
used: 1) structural models as finite-clement models, non-structural models as statistical
or neural networks models and hybrid models (Bossoney, 1994). Quantitative methods
of analysis based on statistical models have been used on dam monitoring data for a
long time, as reported in particular at ICOLD Congresses.

2 MODELLING

2.1 The seasonal model

The Hydrostatic-Season-Time (HST) method early proposed by Electricité de France
for analysing pendulums in 1967 (Willm & Beaujoint) has proved to be a powerful tool
for interpreting the behaviour of concrete dams in particular (ICOLD 1985, 1989,
2000). The mechanical behaviour is supposed to be linear elastic. The effect H of the
reservoir level Z is given by a fourth-degree polynomial

Z‘Zmin

HZ)=arwragw? tasw+aswd , w(Z)=7 00— (1)
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where Zpy, is the minimum water level, Zax is the maximum water level, Z=Z(t) is the
water level at time t, and (aj..4) are four parameters. The seasonal effect S is
represented by the sum of sine functions with one-year and six-month periods

S(D)=bsin(wt)+bocos(wt)+bssin?(wt)+bysin(wt)cos(wt) , 0)-—365 (2)

where time t is given in days, and (b;..4) are four parameters. The irreversible effect T
(time drift), which is expressed in terms of monotonic time functions, is supposed to be
negligible in the present study. The nine parameters (c,a;,as,a3,a4,b1,b2,b3,bs) seasonal
model expression at time t;, is

5
&S

Yo=c+H,+S, (3)

where Y=Y (t;), Hp=H(Z(t,)) and S,=S(t,).

2.2 The linear model

The thermal displacements of a thermoelastic beam depends on the thermal force, the
thermal moment and some others functions integrating the temperature distribution in
the cross-sectional area (Thornton, 1996). It is then possible to assume that the
temperature effect I is a linear combination of the concrete temperatures (Silva Gomes
and Silva Matos, 1985):

& TT(t)=d; 012UP(t)+d2012MI(1)+d3012PO(1) +d,40 1SUP(1) +d50 15MI(()+-d ;0 15PO() (4)
where (dy_¢) are six parameters, and 6L is the concrete femperature measured at
location LC. This approach can be considered as a spatial integration of the concrete

temperatures. The eleven parameters (c,aj,as,a3,a4,d;,dp,d3,ds,ds,dg) linear model at
time t, 18

Yyp=c+Hy+HI, (5)

where Y=Y (), Hy=H(Z(t,)) and IT,=TI(t,).

2.3 The ARMA model

The delayed effect ® of the temperature is supposed to be proportional to the
convolution of the impulse response of the dam structure and the ambiant temperature
e, Approximating the impulse response by taking an order one system defined by a
characteristic time T (Bonelli and Royet, 2001) leads to

O()=0g0(1) , e(t):J.;eai"(t’)c~<t-f’>/fdt’ (6)

or equivalently
6, . 0" (-8
(== (7)

T
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As the data are provided every day, the semi-implicit Euler method can be used for

discret expression, leading to the following autoregressive and moving average
(ARMA) model (Box and Jenkins, 1976)

Op=m ;65" +my035" +m36,.; (8)

ml*(l—B)\& ma= Bot — ot )
T+t T+ 0t T+t
where 8t is the time step, 0<B<1 is the coefficient of the semi-implicit scheme and T is a
mean diffusion caracteristic time (unknown). This approach can be considered as a
temporal integration of the air temperature. The seven parameters (c,aj,as,a3,a4,0l9,7T)
ARMA model at time t, is

Y =c+H+0, (10)

where Y=Y (t,), Hy=H(Z(t,)) and ©,=040,,.

3. RESULTS

In the study of the displacement of concrete dams submitted to water level fluctuations
and to temperature oscillations of the environnment (air, solar radiation and water), the
behaviour is usually supposed to be linear (thermoelasticity) in a first approach.
However, uncoupling the water level effect and the temperature effect is not possible
because the temperature of the upstream face depends on the temperature of the water
and on the level of the water. The superposition of water level and temperature effects
can be assumed if water level effect means mechanical and thermal water level effect. If
the operation is almost seasonal, another difficulty arises as consequence of the large
correlation between the thermal and hydrostatic variables : this is the case in the present
analysis, and the independance of these two effects can not be assumed.

The values of the parameters are defined to minimize the sum of the least square
between the measurements y and the computed values Y.

The results are given table 1. The values of (Zpyin.Zmax) Were chosen (o be
(1660,1782). For the ARMA model, to compute the temporal convolution (6), the first
hundred days were excluded of the analysis.

The water level effect is nearly the same (figure 1), except for low water level
(Z<1700 m). There was no real difference between the results of the three models for
the total displacement during the period of analysis (figures 2,4,6) and the forecasting
period (figure 8).

In the seasonal model, the thermal effect is assumed to be a function of the date of
the year only, in other words to the season. Only the water level is required, but this
model admits that the thermal conditions of the dam should be the same on the same
date of the year. Despite this restrictive assumption, the results are quite good (figure
2). If the seasonal effect is supposed to be the temperature effect, it appears to have a
one-year period only (figure 3).

The linear model and the ARMA models provide good results (figures 4 and 6), even
if some peaks of temperature effects are not well explained (figures 5 and 7).

The ARMA models are widely used in many different fields, for example in
financial forecasting (Clements and Hendry, 1998). These models can be the discret
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expression of a transfert function model (Young, 1998). Their application in the Civil
Engineering context has been limited to date.

S.BONELLIL, H.FELIX:
Delayed response analysis of temperature effect page 4



Model Seasonal Linear ARMA
Date min 1 1 100
Date max 2557 2557 2557

N 2557 2557 2458
R2 0.99 0.99 0.98
c 28.31 25.89 25.36
H
aj -43.35 -72.59 -1k8&6
ap 139.77 265.38 107.61
a3 -137.38 -317.34 -142.34
ay 90.86 174.78 105.13
S IT ®
by 8.90 di -0.21 Ol -1.64
by 7.49 do -0.67 T 32.50
b3 0.24 ds -0.58  (beta=0.5)
by -0.37 dy -0.52 (dt=1)

ds 3.79

dg -1.43

Table 1. Results of analysis, value of coefficients of the models.
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Figure 1. Water level effect H(Z), comparison between seasonal, linear and ARMA

models
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Figure 2. Radial displacement, comparison between measurements y (pendulum) and
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Figure 3. Temperature effect, comparison between measurements y-H at constant water

level (pendulum) and seasonal model S
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Figure 4. Radial displacement, comparison between measurements y (pendulum) and
linear model Y=c+H+I1T
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Figure 5. Temperature effect, comparison between measurements y-H at constant water
level (pendulum) and linear model 11

S.BONELLI, H.FELIX:
Delayed response analysis of temperature effect page 8



+_PENDULUM —— ARMA model |

B0 -

70 4

60 4 .

Pprl

50 A

40

30 4

20 - T — T T T T
0 500 1000 1500 2000 2500

Figure 6. Radial displacement, comparison between measurements y (pendulum) and
ARMA model Y=c+H+0O
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Figure 7. Temperature effect, comparison between measurements y-H at constant water
level (pendulum) and ARMA model ®
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Figure 8. Radial displacement, forecasting for the period 1999 to 2000, comparison
between seasonal, linear and ARMA models
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INTERPRETATION OF AN ARCH DAM BEHAVIOUR
USING ENHANCED STATISTICAL MODELS

A. CARRERE, C. NORET-DUCHENE
COYNE ET BELLIER, 9 allée des Barbanniers, 92 Gennevilliers, France

ABSTRACT

The readings of a virtual unique pendulum representing the crest deflection of
SCHLEGEISS arch dam have been analysed over the 1992-1998 period, in order to
predict deflections which occurred in the following two years. The Hydrostatic—
Seasonal-Time (HST) statistical method has been preferred to structural analyses
because all conditions were optimal for its use (large experimental period, few non-
cyclic delayed effects, no major non-linear behaviour expected). The HST model was
prepared with an experimental version of the CONDOR software, developped by Coyne
et Bellier. It provided a prediction of the deflection at crest with an expected average
accuracy of 1.5 mm. It also allowed a detailed analysis of time effects to be carried out,
during which a significant step of the pendulum readings has been identified to have
occurred in summer of 1993. This might allow a realistic structural model (MODAP) to
be used as the next step to explain this special event.

Key words: Safety assessment, Concrete Dam Structures, Arch Dam, Monitoring,
Interpretation, Statistics

1 INTRODUCTION

The objective of the present exercise is to predict movements of SCHLEGEISS arch
dam over the period from 1999 to 2000, starting from observations accumulated during
the previous period 1992-1998. For such purpose, two main methods are applicable: the
structural, so-called 'deterministic' method, and the statistical one. Any combination of
both is also possible (Carrere [1]). Conditions prevailing for the subject are actually
especially favourable to statistical analyses, since delayed effects are likely to be small.
For this reason, the Authors decided to found their contribution mainly upon statistical
analyses, referring to a very simple structural model only for verification.

The statistical analyses have been carried out with the help of CONDORpc, an
experimental software especially developed for the interpretation of dam monitoring
results. CONDORpc has two working modes:
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- Spatial analysis, where readings from several instruments throughout the structure
are correlated ; the Principal Components Analysis (PCA) algorithms are used; the
"pc" in the name of the software stands for reference to this method;

- Temporal analysis, giving relations between readings at different moments for the
same instrument; this refers to the "Hydrostatic/Seasonal/Time (HST)" method, with
some enhancements already implemented and experienced in the commercial

version CONDOR II (Carrere [1], Boutayeb [2]).

Both methods have been used. It has been found that the temporal analyses provide
more accurate predictions, most likely because Theme C problem refers to only one
pendulum, also because the parameters leading the dam movements (i.e. hydrostatic
load, temperature and rheology of materials) are well represented by the HST functions.

2 PREPARATION OF THE STATISTICAL ANALYSIS

A database dedicated to CONDORpc has been prepared with the main characteristics of
the dam (crest level, height, date of impoundment) and with the readings extracted from
the file MONIT.TXT provided by the Formulator. Statistical models have then been
prepared for secondary readings (temperatures and water level), with the exception of
temperature T15mi, which has a standard variation of 0,1°C only, and is therefore
nearly not significant. The attention has been called upon three special aspects, which
are discussed below.

2.1 Seasonal variations of the reservoir level

The reservoir level follows rather well a cyclic yearly variation (Figure 1), however the
coupling with the season is imperfect with an explanation coefficient of only 0.57.

Retenue (valeurs brutes)

1725}

1700

. jsaison

Janv Févr Mars Avril Mai Juin Juil Aolt Sept Oct Nov Déc
Figure 1: Yearly variations of reservoir level —~ 1992-2000
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A rather good independence of hydrostatic ("H") and seasonal ("S") functions may
therefore be expected which is a favourable factor.

2.2 Seasonal variations of temperature readings

Temperatures measured by instruments located close to the downstream face of the dam
follow rather well the air temperature. Temperature T12up is measured close to the
upstream dam face at el. 1750.65; it is obviously influenced by the variations of the
reservoir level in front of it, as shown by Figure 2. Readings on other instruments
follow rather well seasonal cycles, especially T12mi which is likely to influence mostly
the pendulum readings variations (Figure 3).

valeurs brutes ,
L
In the air
10 gﬁ %
2 {
Under water %
I temps,
1992 1993 1994 1995 1996 1997 1998 1999 2000 20071

Figure 2: Variations of T12up Vs time — 1992-2000

2.3 Abnormal readings

The model for temperature T12mi has detected an important anomaly, which occurred
between 25/06 and 26/07/94 inclusive. This can be clearly seen on Figure 3. The lower
graph presents readings corrected from hydrostatic and seasonal effects Vs time, it
shows that the quick raising is about 3°C in 5 days, and it is neutralised during the next
25 days.

The explanation of this phenomenon has not been identified. It may be due to a local
change of thermal conditions e.g. the isolation system being removed during a few days,
or something similar. Whatever the reason, it has been assumed that the phenomenon
was only local and has not influenced significantly the whole structure. Readings during
the abnormal period have therefore been discarded from further analyses where
temperatures were considered.
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Figure 3: Fac-Simile of CONDORpc graph for T12mi instrument: Variations of direct and corrected values Vs time

3 PREPARATION OF THE HST MODEL

Several models have been prepared successively, until reaching a prediction considered
optimal. Results have been evaluated on the basis of the residual variation coefficient,
which quantifies the average difference between the prediction and the measure. All
models are based on the 2557 observations available between 01/01/1992 and
31/12/1998.
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3.1 Standard model

The default model automatically calculated by the software has discarded insignificant
functions and has kept two "H" functions (Z, Z%), all four seasonal "S" functions (SinS,
CosS, Sin*S and SinS*CosS), the time-drift function T, and the drift reduction function
Exp.(-T). The residual standard deviation is 1.5 mm which corresponds to an
explanation coefficient as high as 87.9 percent (Figure 4).

3.2 Model without time drift reduction function

It has been considered that the drift reduction could not be considered a significant
phenomenon, more than 20 years after the first loading of the dam. The drift reduction
function Exp.(-T) has therefore been discarded from the second model. In this one, the
residual standard deviation and the explanation coefficient are nearly unchanged from
the previous. Figure 5 shows that the drift through the period is increased to 0.4
mum/year, instead of 0.25 mm/year before.

3.3 Model with a step function

When examining the corrected values Vs time given by the second model (Figure 5
above), the drift appears to be mainly due to a sudden variation during the year 1993. A
third model has therefore been prepared, with incorporation of a step function. A step
function is a special feature implemented into CONDORpc, which is equal to 0 before a
given date, and becomes equal to 1 from this date onwards. After optimisation, the step
has been located to the date of 05/08/1993 and it has shown a step value of 2,3 mm
towards downstream. This can be seen on Figure 6.

The main features of the model are shown on Figures 7 and 8, which are fac-simile of
model-description sheets issued by CONDORpc:

- the residual variation coefficient is reduced to 1.36 mm,

- the corresponding explanation coefficient is higher than 89 percent, which is an
excellent result,

- the influence of the seasonal effect is 27 mm, with the maximum at the end of
August and the minimum at the beginning of March,

- the influence of the hydrostatic effect is 57 mm when the water level varies from el.
1680 to el. 1782 (the range of experience is limited downwards to el.1680 and the

correction function is no more valid below),

- the drift is now only 0,09 mm/year, much less than in previous models and its
significance is low.

The physical significance of the step in 1993 is discussed further below.
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Figure 4: Standard model for the pendulum automatically prepared by CONDORpc ~ Std. Dev.=1.49 mm
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Figure 5: Model for the pendulum without reduction drift function ~ Std, Dev.=1.51 mm
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Figure 6: Model for the pendulum with a 2.3 mm step function in August 1993 — Std. Dev.=1.36 mm
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Any attempt to obtain better adjustment of the model on readings over the 1992-1998
period have failed, which means that the model described above is the optimal one. It
has therefore been selected to carry out the prediction over the 1999-2000 period.
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Figure 7: Fac-Simile of model-description sheet prepared by CONDORpc for the pendulum — Correction functions
Top: readings corrected with seasonal and hydrostatic effects
Left: seasonal effect function

Right: hydrostatic effect function
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Modéle HST actif du 31/07/2001 16:43:05

Données

Nombre de séries de mesures valides utilisées : 2557
Date de la premiére série : 01/01/1992

Date de la dernigre série : 31/12/1998

Durée de la période : 7,00 années

Résultats statistiques
Ecart-type des mesures brutes: EctB= 12,496 mm
Ecart-type des écarts avec le modéle: EctC=1,365 mm
Coefficient global de corrélation: CgC = 0,994
Coefficient global d'explication: CgE = 89,1 %
Formulation du modéele
Coesfficients de
Pendule (mm) - = 82,8254 Student-Fisher
+ Z* -165,5969 } correction 204,700
+ Z2 * 120,0897 } selon la 136,300
+ Z3 * } cote de
+ Z4 } retenue
+ (1-CosS) *  -7,0327 } correction 152,900
+ SinS * 11,2697 } selon 104,700
+ Sin2g * 1,3601 } la 15,430
+ SinS.CosS *  -1,5820 } saison 17,300
+ T/Tbt * 0,0893 } correction 3,942
+ (TTb)z * } selon le
+ Exp(-T/Tbt} * } long terme
+ {D>=DDM } * 2,3134 } terme de marche 24,250
Constantes de la formulation
Zphe = 1782,000 Hbr = 130,000
Tht =1 (en années) Dinit = 01/01/1992

DDM = 05/08/1993

Notations
Z : creux relatif: (0 = plein, 1 = vide), calculé par la formule: Z=(Zphe-H)/Hbr ,avec
. Zphe : cote des plus hautes eaux, et
. Hbr : hauteur du barrage,
H : cote de la retenue lors de la mesure courante,
S : saison, comptée de 0 au ter janvier & 360 au 1er janvier suivant,
T : temps en années & partir de la date Initiale Dinit (correspondant ou non & la mise en eau),
Tht :constants de temps, ~
DDM : date de marche & partir de laquelie la correction du terme "de marche" est appliquée,
D : date (et heure) de la mesure courante.

Figure 8: Fac-Simile of model-description sheet prepared by CONDORpc for the pendulum — Numerical description
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4 RESULTS
Results are provided under the shape of

- the formulation of the model, which allows calculation of the predictive value for
the pendulum reading at any moment,

- the predictive values for the 1999-2000 period.

Based on the residual variation coefficient of 1.36 mm obtained during the 1992-1998
observation period, the predictions given below are expected to have an average
accuracy of +1.5 mm.

4.1 Model formulation

The model is expressed as a function of

- the relative reservoir level Z=(MaxWL-WL)/Height = (1782-WL)/130,

- the season angle, rounded from 0 at January 1*' to 360 at December 31°,

- the time T in years since January 1%, 1992.

The temperature values are not needed in the formulation.

The full formulation of the HST model is given in Table 1 below.

Prediction (mm) = 82.8254 Constant
- 1655969 * 7 Hydrostatic functions
+ 120.0897 * 72 7 =(1782-water level) / 130
- 7.0327 * [1-Cos(S)]
+ 11.2696  * Sin(S) Seasonal functions
+ 1.3601 * Sin%(S) S =0 to 360 from 01/01 to 31/12

- -1.5820 * Sin(S)*Cos(S)

+ 0.0893 * T Time drift function (T in years from
01/01/1992)

+ 2.3134 * {T>=Tstep} Step function =1 if T>=(Tstep = 05/08/1993),
otherwise =0

Table 1: Formulation of the statistical HST model for the pendulum

Interpretation of arch dam behaviour using enhanced statistical models ~ Coyne et Bellier — France
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4.2 Predictive values for the pendulum

CONDORpc directly gives predictive values for individual instruments and series of
readings. In order to provide the file of results under the specified format, the statistical
model prepared by CONDORpc has been copied into an EXCEL sheet. Numerical
predicted values for the pendulum for the period 1999-2000 are included into the
BW6C_Cobl. TXT file. The same spreadsheet has been used to prepare Figure 9, where
readings and predictions can be compared.

ST Model of pend'ﬁ

Figure 9: Comparison between readings and predicted values, by statistical HST method
5 DISCUSSION

5.1 Input of structural finite element analysis

In order to check the consistency of hydrostatic and seasonal functions included into the
statistical model used, a simple FEM model of SCHLEGEISS arch dam has been
prepared and used to calculate the crest deflections under simple hydrostatic and
thermal effects. The COQEF3 code has been used (Hamon [3]). In this code which is
devoted to the quick analysis of arch dams, the dam is modelled with thick shell
elements and the foundation is represented with infinite VOGT elements. The mesh has
been derived from the one provided by the Formulator. All suggested properties of the
materials have been used (including concrete modulus Ec=25 GPa), with the exception
of the foundation which has been idealised as an isotropic material, with a unique
modulus of Er=20 GPa. The thermal load case has been strongly simplified, in that way
that variations of temperature have been considered uniform from upstream to

Interpretation of arch dam bebaviour using enhanced statistical models — Coyne et Bellier - France
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downstream; they have also been supposed to be synchronised and proportional to that
measured at point T12mi, with the ratios shown in Table 2 below.

Elevation 1783.00 1764.50 11"7152(’;1;5 1744 .00 1724.00 1704.00 1685.00
Temperature |, ¢ L5 1.0 0.9 0.6 0.4 0.2
variation (°C)

Table 2: Temperature distribution Vs elevation

;Sxmpylye structural Model of pendulum obtained With COQEF3
Ec=25 GPa

Prediction Measure —- — Difference
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Figure 10: Comparison between readings and predicted values, by simple structural FE model

The adjustment obtained with this simple structural model is much poorer (Figure 10)
than the one obtained with CONDORpc. The difference is approximately four times
more (notice that the vertical difference scale on the right is different from Figure 9).

The hydrostatic effects on crest deflection given by both FE and HST models are
presented on Figure 11. FE results are also presented for concrete moduli of 33 and 45
GPa (with a constant Ec/Er ratio). The comparison suggests that the equivalent elastic
modulus is close to 25 GPa at low hydrostatic loads (say between 1700 and 1750), but
surprisingly it seems to increase when the water level is high, up to 35 GPa or even
more. Altogether it is suggested that the best unique modulus should be selected around
33 GPa, instead of 25 indicated by the Formulators.

As far as thermal effects are concerned, the deflection at crest level given by the FE
model for this simplified load case is 3.3 mm only. Considering that the cyclic variation
of T12mi is 2.7°C 1n average, the corresponding thermal component of the pendulum
variations should be 8.9 mm. This is much less than the seasonal variation of the
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pendulum given by the statistical model, which is 27 mm i.e. 3 times higher. Such
excessive discrepancy is likely to be due to the simplification of the thermal distribution
assumed in the FE model load case: the bending effect due to temperature differences
through the dam thickness are overlooked, as well as phase differences at different
levels. Moreover, no temperature reading is provided close to the crest level, where the
dam is less thick and where rapid temperature variations are likely to induce significant
part of the crest deflection.

Hydrostafic deﬂecﬁon calculated with COQEF el'nd” CONDORp

— -+~ COQEF, Ec=25 ~—COQEF, Ec=33 -+~ COQEF, Ec=45 —s—HSTmodel | o

Figure 11: Comparison of hydrostatic effects on Crest deflection given by statistical HST method and by FE method

The simple FE model used here represents rather well hydrostatic effects but is not
realistic at all for thermal aspects. To reach the same level of accuracy as that given by
the HST model would require a time-history of the full temperature field in the whole
dam to be determined as a preliminary, starting from the 6 instruments readings plus air
temperature. This kind of exercise requires an amount of work which is out of scale
with that spent for the statistical analysis.

5.2 Time effects

Time effects have been identified by all statistical models. They are relatively important
as shown in Table 3. As already mentioned, most of the time effect is concentrated
within a short period in August 1993. This has been idealised as a single step of 2.3 mm
towards downstream. One may notice that this period corresponds to an exceptionally
high water level above 1780: the maximum for the period was indeed at the beginning
of October 1993, where el. 1781.52 was reached. It may be supposed that some
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adjustment of the dam structure (and most likely of its foundation) occurred under such
unusual load conditions. The determination of the time step during the model
optimisation is not very accurate and another value within 2 months more or less would
not change other parameters. Once the step is taken into consideration, the remaining
drift becomes nearly negligible.

Model n° Drift / year 1992-1998 Drift Step Total time effect
1 0.25 3.6 0 3.6
2 0.41 2.9 0 2.9
final 0.09 0.6 2.3 2.9

Table 3: Time effect on the pendulum (mm) given by statistical models for the 1992-1998 period

5.3 Conclusion

Statistical models and so-called "deterministic" models can be used separately or
together to interpret monitoring data.

Statistical models are often simpler and should therefore be preferred whenever
possible. The most disseminated one is the HST method. However there are restrictions
to its use, the main ones are:

- when data are not available over a rather long period of time and in different load
conditions (i.e. start of first impounding),

- when strongly non-reversible effects are expected, to some extent,

- when delayed non-cyclical effects are observed (e.g. piezometric levels in seepage
fields), although recent improvements of methods allow to take them into account.

The problem proposed for Theme C is ideal for use of the HST method. CONDORpc
allowed analysing in detail the delayed effects, thanks to the step function implemented
in it. The adjustment of the model with readings of the 1992-1998 period is rather good,
and it is expected that its prediction for the 1999-2000 period will have an average
accuracy around 1.5 mm.

The Principal Component Analysis (PCA) is another statistical method available to
determine whether the behaviour of a dam is consistent with the past or not. Its principle
consists in checking if the synchronism between different instruments is "as before" or
not. However it is restricted in practice to conditions where correlations between
different instruments are linear and reversible. It has been found that it was not the case
in the frame of Theme C, however it might be of interest with consideration of all other
pendulums in place in SCHLEGEISS dam, to better identify the special events of 1993.

It has also been shown that a simple deterministic model is not able to provide
predictions with an accuracy comparable to that obtained with CONDORpc. To do so
would require a number of data to be taken into account, with at least the full
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temperature field inside the dam Vs time, and time effects could be properly represented
only with additional data on the material non-linear properties. The amount of work and
data corresponding to such advanced model are out of scale with that mobilised by
statistical approaches. Structural models should therefore not be used alone for
interpreting monitoring readings. Their best use is at a next stage, when direct readings
have already been interpreted with statistical analyses and summarised into strong
trends. Only deterministic models are able to explain phenomena previously identified.
They can be focused on specific aspects of the dam behaviour, and the engineer knows
at this time which effects and which parameters are to be considered. For example, the
non-linear response of the dam under exceptional hydrostatic loads such as that of 1993
could be more precisely investigated. This is the concept of the MODAP, the Model
Accompanying a Project, set up at the time of the project (or later in the case of old
dams) and progressively enhanced with features best suited to take into account the
output of statistically interpreted monitoring, whose examples now exist for major dams
(Carrere [1], Zenz [4]).
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Appendix

Presentation of the Hydrostatic-Seasonal-Time (HST) statistical method

The HST method was originally developed by Electricité de France (EDF). For more than
thirty years it has been used to monitor the largest French dams and is now a standard. Coyne
et Bellier and Ingema (Morocco) have developed the Condor II expert system for easy
implementation of this method; it has a user-friendly interface for pre-processing and post-
processing of monitoring data.

The HST method involves creating and periodically updating (typically every 2, 4, or 6 years)
models of “hydrostatic, seasonal, and temporal” behaviour validated by statistical analysis,
and using them for instant appreciation of new readings.

The readings accumulated from instrumenta installed on the dam are used to

i) appreciate reversible phenomena (H, linked to the reservoir level, and S, a seasonal term
covering all the thermal effects factored to their mean annual variations, including the
effect of seasonal rains where applicable),
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ii) qualify the scatter of readings,
iii)detect and qualify any drift over time which could indicate significant evolution in the
dam; this point is particularly important for periodical diagnoses.

Separation into one-variable functions makes it possible to independently analyse and, above
all, qualify the effects of each parameter on the dam behaviour. In practical terms, the
functions are determined through a multi-linear regression, where the raw measurement, MR,
can be expressed as follows:

MR = (Z) + g(S) + h(T) + R

where Z is the normalised reservoir level, S the season, T the time, and R the residual
(unexplained divergence).

The corrected measurement, MC, is obtained by subtracting reversible effects from the raw
measurement, which returns it to identical reservoir and seasonal conditions:

MC =MR - f(Z) - g(S) = h(T) + R

Scatter in raw and corrected measurements are characterised by the standard deviations (VaB
and VaC) of these readings from their mean values. These standard deviations are involved in
the definition of the global coefficient of correlation, CgC, and of the global coefficient of
explanation, CgE, which represent the quality and validity of the model.

CgC =

Although the global correlation coefficient is often used by statisticians, the linearly-varying
global coefficient of explanation says more to engineers; it characterises the gain in scatter
due to the correction law, and corresponds to the part of variations in raw readings that can be
explained by the model.

The width of the band of scatter of the raw readings and corrected readings can be expressed
by 5 VaB and VaC standard deviations respectively. Ninety-nine percent of the
measurements are within +2.5 standard deviations,

A new reading MR can be immediately diagnosed by using correcting functions H and S and
by comparing the corrected value MC with previous corrected measurements and with the
corrected model graph (function T solely). If the residual for this measurement is within the
+1 residual standard-deviation band, it is deemed to be "normal"; if it is between +1 and £2.5
standard deviations, it is deemed to be "acceptable"; outside this range it 1s considered to be
"abnormal",

The quick response of the diagnosis makes it possible to immediately take a new reading for
any apparently abnormal measurement. If the anomaly is confirmed, it must be checked
whether the deviation concerns a temporally and spatially isolated reading (damaged
instrument or localised phenomenon), or a particular group of instruments (problem on a
transmission line or, on the contrary, significant drift on one side of the dam or in a particular
cross-section), or whether the deviation gets significantly larger over time.

In the latter case, the validity of the existing model must be questioned and a new test model
1s then generated, incorporating the input of the latest readings. At this time, the new model
must be given a new interpretation, i.e. the values and the variations of its parameters
(hydrostatic, seasonal and time effects) must be qualified again.
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A SIMPLIFIED DETERMINISTIC MODEL OF ARCH DAM DISPLACEMENTS
BASED ON THE TECHNIQUE OF "MONOTHERMOMETRIC INFLUENCE
COEFFICIENTS”

SYNOPSIS
A rational modelling of the displacements caused by concrete temperature variations (to be
added to those caused by variations in hydrostatic load) can be achieved using the theoretical
framework introduced by FANELLI and GIUSEPPETTI (1976) under the denomination of
‘monothermometric influence functions”. In this approach a formal space/time separation of
the FOURIER heat-conduction equation is effected under the assumption of periodic
temperature variations. This allows to express the time dependence of the temperature at any
point as a linear function of the measured temperatures (at a limited number of points inside
the dam volume) and of their time-derivatives, the coefficients of this linear relationship being
the space functions obtained from the formal space-time separation. As a consequence it is
evident that, by introducing these same basic temperature space-distributions as the thermal
input to a suitable structural analysis code, it becomes possible to compute, once and for all,
influence coefficients (separately for the thermometric readings and for their time-derivatives)
which allow to build up ‘a priori’ estimates of the thermal components of the structural
displacements by using directly the measured temperatures (and their time-derivatives). The
static components are evaluated -as usual- by building up, through repeated structural
analysis, suitable analytic functions of the water level.
In the present paper the technique of ‘monothermometric influence functions” is applied in a
simplified context to hindcast the Schlegeis arch dam displacements, and it is shown that in
spite of the simplifications introduced the model estimates of displacements can be made to
follow closely -after calibration of the material constants- the corresponding measurements.
After calibration of the constants using past data, the influence coefficients can be used to
forecast in real time the expected displacements, with the aim of comparing them to the
observed values and thus giving an objective yardstick to the monitoring activities.
The interest of the present study lies, therefore, in the demonstration that a satisfactory
forecasting of expected displacements can be achieved not only with the powerful Finite
Element or Boundary Element methods, but also by using much simpler software platforms,
whose low cost and remarkable ease of use put rational displacement forecasting by
deterministic models within reach even of small, limited-budget organisations and
underprivileged countries.
The method may be expected to incur some loss of efficiency in the case of yearly cycles (both
in water level and in temperature variations) markedly departing from periodicity; also, the
necessity to obtain numerical estimates of the temperature time-derivatives calls for some
caution, entailing the use of suitable numerical filters. However, in the Schlegeis case these
delicate points did not appear to unduly affect the results.



1 - GENERAL CONSIDERATIONS, BASIC ASSUMPTIONS

Experienced dam engineers know very well that the setting up of a mathematical model
intended to interpret in rational terms a physical phenomenon, starting from ‘first principles’,
entails in any case a schematisation of all the complexities of the real world, and therefore
leaves wide margins of choice among different options available to the modeller.

Considering this, and running somewhat contrary to the prevailing trends, the Authors asked
themselves what kind of results could be achieved, were one to put oneself in the frame of
mind to choose, at every stage of the model formulation, the simplest possible assumptions,
identified by isolating the predominant factors at play in the physical phenomena involved and
remorselessly discarding all the more sophisticated options.

Thus, confronted with Theme C of the present Benchmark-Workshop, they decided not only to
try and use, as a structural model, the DESARC 3.2® code (which is based on a RITTER-like
formulation, the foundation compliance being modelled through the VOGT coefficients; the
underlying model allows for merely a couple of dozens of degrees of freedom at most), but
even to model the temperature space/time variations in the concrete mass as being produced,
at each elevation, by a /ocally one-dimensional heat flow along the upstream/downstream
horizontal direction; this heat flow, furthermore, being assumed to be periodic (with a yearly
period). However, within the framework of these rather crude shortcuts, the Authors wished to
preserve as rational an approach as possible, e. g. by respecting, in the modelling of the
thermal components of displacements, the FOURIER one-dimensional heat-conduction
equation; and by considering that in order to correctly synthesise the space/time temperature
distribution from the observed thermometric readings not only the temperatures themselves,
but also their time-derivatives should be taken into account (see FANELLI and GIUSEPPETTI,
1976).

These drastic simplifications in basic assumptions adopted by the Authors were not motivated
by sheer curiosity: in fact, were one to demonstrate that such stripped-down models could still
interpret with reasonable accuracy the observed displacements, the interesting by-product of
such a study would be the possibility to use very fast, economical software platforms for on-
line monitoring and safety control. This could present an interest for small dam operators as
well as for those charged with dam monitoring in underprivileged countries.

Besides, the Authors think that the simplified mathematical models are interesting in
themselves, allowing the engineer a firmer, more intuitive grasp over the workings of the
mathematical machinery; something that the heavy number-crunching mainstream codes do
not easily allow.

The development of this exercise was quite exciting, and the results left the Authors with the
preliminary impression that such apparently crude models might, indeed, be used quite
efficaciously for displacement forecasting; however, the observed displacements for the year
2000 having not been provided by the B.-W. organisers (and quite rightly so!), the final proof
of the pudding, as always, will lie in the eating... (see paragraph 3.6, Figures 1, 2; paragraph
4, Figures 3, 4).

2 — THE CONCEPT OF ‘"MONOTHERMOMETRIC INFLUENCE FUNCTIONS'

In a concrete dam where the temperatures are monitored by embedded thermometers the first
problem confronting the analyst trying to set up a deterministic behaviour model] consists in
reconstructing the continuous thermal field from the discontinuous information provided by the
instruments. This problem can be tackled in different ways: for instance, simple space-
interpolation functions could be applied to the instantaneous measurements of temperature.
However, it is readily seen that this approach cannot, in general, satisfy the FOURIER heat-
conduction equations, except in the trivial case of stationary conditions, which is clearly
without interest for dams; in fact, only the temperature variations with respect to the average
stationary state are implicitly considered in the following.

FANELLI and GIUSEPPETTI (1976) showed that it is possible to exactly reconstruct the thermal

field from the thermometric measurements 9_/(1‘), under the assumption of periodic

temperature variations, from the equation:

a9,
9(x,y,z,1) = ij(x,y,z).Sj(l')+ Zq)j (x,y,z).j , (2.1)
J J !



where the space functions fj(x,y,z) , (pj(x,y,z) satisfy conditions (2.2), derived by

. . . . 09
imposing that (2.1) should satisfy the FOURIER heat-conduction equation a.V>9 :a—:
t
aVif, =-0’gp,
2 (2.2)
a'v (pj = ‘fj
a being the thermal diffusivity of concrete (in the order of 0.004m’>/h ') and ® the
2.
circular frequency of the temperature variations: o :77{ , if T is the corresponding

period (usually one year, or 8760 hours)?; the boundary conditions for the aforementioned
space functions are:

T (B) =8,
(pj (Pk ) = O
at the thermometric locations  , , &, being the KRONECKER delta.

The problem is then reduced on one hand to defining the space functions
fj.(x,y,z) , cpj(x,y,z) , on the other hand to finding effective means to estimate the time-

ds (1)

J

(2.3)

derivatives from the measurement data. Besides, the basic assumption of periodic

thermal conditions should be critically examined, trying to ascertain the errors that can be
produced in the results as a consequence of the possible departures of real conditions from the
strict periodicity.

3 - THE BUILDING UP OF THE ‘MONOTHERMOMETRIC INFLUENCE COEFFICIENTS’
As a consequence of (2.1), it is evident that by introducing the unit space functions

fj(x,y,z) " (pj(x,y,z) (pertaining to the generic thermometer Tj. located at Pj ) as

distinct thermal inputs in a structural analysis code, the displacements thereby obtained at the
points of interest for monitoring,

CM, }
CM,,

are the sought-after ‘monothermometric influence coefficients’, such that the thermal
component of the corresponding displacement is given in our model by:
d9 (1)

() — " " J
é(t)—Z(,M“ 9,()+>CM, . - (3.2)

J J
Therefore the knowledge of (3.1) solves -consistently with our starting assumptions- the
problem of using directly the measured temperatures® to forecast, by means of pre-computed
influence coefficients, the thermal part of the dam behaviour; the only difficulty being the
necessity to build up, from the available measurements, also reliable, bias-free estimates of
the corresponding time-derivatives.

(3.1)

' That the value of @ is not far from the quoted value in the case of the Schlegeis arch dam is confirmed from
comparison of the observed variations at H 12 MI (the variations at H 15 MI are to small to be of any use) with those

deduced from the variations at H 12 UP and H 12 DO [by eq. (2.1)] under the assumption a = 0.004m>h™" .

21t can be shown that the monothermometric influence coefficients here defined show relatively small variations with
the frequency of thermal variations, provided that the thickness is greater than about 10-15 m; this explains why the
technique works also for thermal variations that include harmonics of frequency higher than the annual one.

® The above developed treatment would apply, as stated, only to the zero-average, periodic temperature variations; by
introducing instead into (3.2) the raw thermometric readings, as ease of use suggests, a constant offset is generated,
which is taken care of by the calibration of the model constants, see further on.



3.1 -~ THE SPACE/TIME SEPARATION IN THE FOURIER ONE-DIMENSIONAL
EQUATION: THE BASIC UNIT TEMPERATURE DISTRIBUTIONS (EACH RELATED TO THE
READINGS OF ONE SINGLE THERMOMETER)

A favourable circumstance occurring in arch dams, as a consequence of the slenderness of
their crown section, is the fact that the three-dimensional heat conduction across the thickness
can be approximated with reasonable accuracy, at each elevation, by a one-dimensional heat
flow along the local horizontal direction, x . Thus, in place of (2.2), we can write for each
thermometric section the approximate relationships:

dz«fj _ 2
a. o —0" P
) ' (3.1.1)
d ?,
a. o = f;

with boundary conditions like eq. (2.3), which can be solved analytically when there are but
two thermometers in each horizontal thermometric section (one near the upstream face and
one near the downstream face).

The general solution of (3.1.1) can be found without difficulty:

S (x)=4, Chlo.x).cos(or.x) + B, Chloc.x).sinfor.x)+ C, Shoc.x).cos(a.x)+ D, Sho.x).sin(a.x)
0., (x)=-D, Chlow.x).cos(cr.x) + ¢, Chfce.x).sin(oc.x) - B, Sh{ec.x).cos(or.x)+ 4, Shce.x).sin(er.x)
(3.1.2)

where a= ‘}—EO— (3.1.3)
2.a

(a=0.3 fortheusualvaluesof a , o ).

The four constants A4,, B,, C,, D, appearing in (3.1.2) can be determined by imposing

J? J J
the boundary conditions:

fj(xj)zl
£ )=0
o (3.1.4)
(pj.(x_/.): 0
q)j(xk): O
where x  , x, are the local abscissae of the two thermometers of the section (being e. g.

x =0 on the upstream face and x = L(z) on the downstream face).

Given the available thermometric sections (there should be at least two of them, at different
elevations: we assume these thermometric sections to be located, as usual, in the vertical
crown section), it remains to synthesise plausible space distributions all over the vertical crown

section: F_/.(x,z) , respectively (D_/.(x,z) . from each of the /oca/ x-wise unit distributions

fj(x) , cpj.(x) ; this can be effected thanks to suitable shape functions in the variable z or

¢ = ff ( H being the dam height), as will be explained in the next paragraph. The variations

of the temperature distribution along the third coordinate, i. e. along the horizontal planes
away from the vertical crown section, are disregarded in the absence of more detailed
information, this being usually the case. In this way each of the unit temperature distributions
gives rise to a space-wise completely defined thermal state, which can be used as already
explained to generate the ‘monothermometric influence coefficients’ for the thermal
component of the displacement of any given point.

3.2 -~ THE INTERPOLATION OF THE BASIC x-WISE DISTRIBUTIONS WITH RESPECT
TO ELEVATION
Let us introduce non-dimensional coordinates & , (



ézﬁ ; & =0 along the upstream face, & =1 along the downstream face;
V4

z
¢ :E ; ¢ =0 atdamcrest, (¢ =1 atthe dam-foundation interface on the crown

vertical section.

Let us denote the discrete values taken up by { at the thermometric sections by (
let us introduce shape functions

Nm(c:) . as many as there are thermometric sections, satisfying the usual conditions for
shape functions:

4+ then

m

N,(£,)=5,, (KRONECKER delta)
ZN,"(C)EI forany ¢ , 0<¢ <1 (3.2.1)

m

We assume next that the thermal state in the crown section, to be extended along horizontal
planes to the whole dam, can be approximated as follows:

d§
‘9(6 ’C 51) = ZNm (C )fj ((S ’Cm(j))‘gj (f)+ Z Nm (C )(P/ (é ’C'"(f)) dfj (322)
Introducing the 2.m__ ‘unit’ thermal inputs:
Nm (C )f‘j (é 3 ém(/’) )}
, (3.2.3)
N,,z (C )(Pj (é > Cm(j))

into any suitable structural analysis code, the ‘monothermometric influence coefficients’
CM M}
CMW.

valid under our simplifying assumptions and to be used in the computation of the thermal
component of the displacements:
~ d‘g/ (t) .
5(1): ZCM./\./ 9, (/)+ ZCM({)L/‘T , see (3.2), are at last obtained.
J J
It is to be noted that the above outlined procedure is straightforward and does not require to
follow in time the numerical solution of the heat-propagation equations.

) (3.2.4)

3.3 - THE COMPUTATION OF THE MONOTHERMOMETRIC INFLUENCE COEFFICIENTS
FOR THE SCHLEGEIS ARCH DAM

In our exercise pertaining to the case of the Schlegeis arch dam, the above outlined simplified
procedure was followed, choosing as thermometers the two couples H 12 UP, H 12 DO at
elevation 1750.65 ({ =0.247) and H15 UP, H 15 DO at elevation 1677.15 ({ =0.808). The

middle thermometers at each of these two sections, H 12 MI and H 15 MI, need not be
considered (the time variations of the corresponding temperatures are, anyway, quite
negligible in comparison with those of the other thermometers; see footnote 1).

. : o .. dN, .
Parabolic shape functions N, satisfying the condition ﬁd— =0 at crest ({ =0) were chosen.

The basic unit thermal inputs thus defined, see paragraph 3.2, have been computed and
applied in the framework of the DESARC 3.2® software package, obtaining the following
monothermometric coefficients for the radial component of the crest displacement (positive in
the downstream direction):

* An index m different from J , the index used for the thermometers, is here introduced because at cach

thermometric section (hence at a single value of & ) there are two thermometers. Obviously ~ m = m( j ) .



TABLE 1 - MONOTHERMOMETRIC COEFFICIENTS FOR THE SCHLEGEIS ARCH DAM
(UNCALIBRATED VALUES)

H12 UP, | H12 UP, | H12 DO, | H12 DO, | H15 UP, | H15 UP, | H15 DO, | H15 DO,
CM, | oCM, | CM, | oCM, | CM, | 0oCM, | CM, | oCM,

mm/°C | -0.5324 -1.4421 -0.1267 -0.0330

mm/°Crad 0.3349 0.3776 0.0371 0.0186

(In the above table the products ~@.CM  have been listed, in place of CM,, to avoid

having to deal with very large numerical values; these values can be used as such provided
the temperature derivatives are effected with respect to ‘non-dimensional time’ w.f , one year
corresponding thus to 2.t radians).

The listed values were obtained taking for the coefficient of thermal dilatation the value of

8.10'6("(?)*1 as suggested in the enunciation of Theme C of the 6™ Benchmark-Workshop.

[Successive calibration of the model constants (see following paragraph) might suggest that a
different value of the thermal dilatation coefficient should be used].

3.4 — THE CALIBRATION OF THE MODEL CONSTANTS

The comparison between observed displacements and model forecasts have to be carried out,
by necessity, on the total displacements, which are the sum of the component tied to the
variations in water level and those caused by the temperature variations. Besides, a constant
offset of the forecast displacements is to be expected, see footnote 2; a drift term
(irreversible component) may also be present. Consequently, the total/ displacement forecast
by the mathematical model can be written down as:

Sor =P+ D+ RF(q)+S5(3) , where D(t) is the drift term, (3.4.1)
P, R, S = calibration constants . (3.4.2)
F(q) = a suitable function of the water level ¢g(f) , (3.4.3)

obtained by repeated application of the hydrostatic load with varying impoundment elevations,

and
19,
5(9)=YcM,,9,0)+ M, c;,(’)
J J

Comparison of the forecast values, &, , with the observed displacements J,,, over a

as already discussed at length. (3.4.4)

suitable stretch of time (preferably several years) will generate a time-series of differences
V(l):

V([):S()Bs(f)_éror(f) , (3.4.5)
which are functions of the values assigned to the calibration constants P, R, S. and of the
model adopted for D(/) .

By imposing the usual least-squares condition:

Y[V (E)] =min , (3.4.6)

I

Sl
o ”
oy [r@f
namely [—GR*:Q , (3.4.7)
0
&




the ‘best fit’ values for the model constants are determined.

3.5 - THE PROBLEM OF THE EVALUATION OF THE TEMPERATURES’ RATE OF CHANGE
As stated earlier, the present approach is valid, strictly speaking, for periodic variations of
temperature - a circumstance that cannot be expected to hold exactly in actual practice. The
necessity to evaluate rates of change of the thermometric readings in order to apply the
present methodology highlights this contradiction between theory and reality °.

Therefore two questions arise: on one hand to obtain some estimate of the errors that can
affect the present model results as a consequence of the irregularities of the thermal cycle, on
the other hand how to evaluate the time-derivatives in (3.4.4) so as to minimise those same
errors. Past practice suggests that in order to reach the latter goal a compromise should be
struck between a strictly ‘local’ evaluation of the time-derivatives in question and a more
‘smoothed’ one .

Several different numerical devices can be imagined to produce an estimate of the needed
time-derivatives having the required properties; some of them will be briefly touched upon in
the following.

a) Harmonic analysis - This may seem the 'best’ means to obtain the amplitude and phase
of the yearly ‘fundamental’ thermal wave (of course separately for each of the
thermometric time series) and from that obtain the required rate of change ‘as if’ the
signal were reduced to the fundamental in question. However, to get a reliable estimate
a rather long stretch of each time series should be taken into account, which besides
posing a problem for ‘real time’ monitoring is also bound to impair the local
representativity of the derivative estimate.

b) Piecewise, local fitting of amplitude and phase - By dividing each available time series

9(!) into successive intervals of the order of one year or more, and defining for each
interval from 1, to shape functions such as, e. g.:

L, —1

£+1

Mc(t): o p
o for (,<t<t,, _ , (3.5.1)
11, ‘
My () =
Lo =1y
a least-squares best-fit between the time series and the function:
ZMﬂ (N]®,,.sin (@.1)+©,,.cos(w f)] (3.5.2)
£
allows to determine at each instant /, the unknowns ©®_, , ©_, and thereafter to

evaluate locally ‘best-fitting” amplitude and phase of a yearly cycle:

®€ :\/®.§€ +®c2‘€

o, . (3.5.3)
v, = arctg ——
st
such that for 1, <7<y,
Hr)=0,.sin(wr+y,),
d9 (3.5.4)
d—(@—z@pcos(a).ﬂrq/z)

c) Empirical ‘almost local’ filters - Let us remark that since

® It may seem, indeed, contradictory to derive influence coefficients based on the assumption of periodicity and to use
‘local’ time derivatives for time series which are not strictly periodic; in practice it has been shown that results good
enough for monitoring purposes can be obtained with a carefully balanced ‘mixed” approach in which the time series is
somewhat smoothed so as to attenuate the local character of the derivative estimates.



d9 1.d9 _ T A9

e e e , 3.5.5
dot) o dt  2x At ( )

T
taking Afr=-— it comes »4‘9— = AS(N = —T—j , (3.5.6)

2 d(w.1) 2r

. 7 365 o
and noting that T = T =58 days the apparent conclusion is that one could use,
T T

d9

instead of the derivative m , the finite increment A3 over 58 days (the value 29 days
w.f

after the date of interest minus the value 29 days before the same date). Actually, the

results produced by such a procedure could suffer from irregularities occurring around the

two extreme dates of the 58 days interval; therefore, it is better to use a numerical filter

based on a suitable convolution integral over the 58 days period, e. g.

+29
AS(ij =0.110118. J.S(r).sin(ﬂ—x At (t in days), (3.5.7)
2.7 )|, 29

=29
which yields exact results if 9(1’) is a sinusoid with a yearly period, or a similar formula

satisfying three essential requisites: 7) that a constant base value should give null result
(the convolution factor should therefore be an odd function of the time difference from the
date of interest), i7) that the random irregularities over the integration period should tend
to cancel out. and iii) that the influence over the result should be maximum for
intermediate values of the date difference with respect to the central instant, decreasing till
zero for values too near or too far from this date. This is the procedure that the Authors
followed in the Schlegeis arch dam application illustrated in paragraph 4.

d) Empirical adjustments of the finite increments - Taking as at the beginning of c) the

finite increments

AS(ij=9(t+29)—9(z—29) (3.5.8)
2.

for all the dates / over a whole period (1 year), a two-step manual adjustment is made on
all the values in order to give them a regular periodic behaviour that does not affect their
positive/negative average over the two half-periods.

It is to be remarked that procedures a), c), d) pose problems for real-time forecasting, insofar
as all of them require to know values posterior in time to the date of interest; whereas
procedure b) can be applied to yield results as soon as a new value is obtained, albeit wit
lesser accuracy than for past intervals dating back from more than a half-period.

3.6 -~ SOME PRELIMINARY RESULTS FOR THE SCHLEGEIS ARCH DAM
A first spot application was carried out for a chosen one-year period, using approach d) of

previous paragraph and assuming that no appreciable drift was present: D(t); 0.

Fig. 1 shows a comparison between forecast and observed displacements at the mid-date of
each month for the year 1998, after calibration of the three constants P, R, S . The values
obtained by the calibration procedure and the impoundment function were the following:

P =35.Tmm Flg) = Bxpl2.62.4/w+0.146 - 3.283)
R =10.626 ; q—1652 ;g >16063.2
S =1.149 ST T

(3.6.1) , (3.6.2)

The above impoundment function F(q) was obtained from a least-square adjustment with
respect to the values obtained from computations effected for discrete water elevation values
q.
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FIG. 1 - YEAR 1998
COMPARISON BETWEEN MEASUREMENTS (Series 1) AND MODEL FORECAST (Series 2)

The values obtained by calibration seem to indicate that the effective value of the Young
modulus is higher than the indicated value of 250,000 kgf.cm™ , and that the effective

coefficient of thermal dilatation is also higher than the indicated value of 8.10°° ("C)“l

With these same values of the calibration constants a forecast was attempted for the year
2000 (see following TABLE 2):

TABLE 2 - DETAILS OF DISPLACEMENT FORECAST FOR MID-MONTH DATES, YEAR 2000

Forec.

month Water | HI2UP | DHI12UP | H12DO |DHI12DO | H15UP |DH15UP | H15DO {DHISDO displ.
level °C °C/rad °C °Clrad °C °C/rad °C °C/rad mm
1/00 1746.77 4.1 -0.9 -1.7 -2.975 4.8 -1.7 -1.3 -2.575 51.2
2/00 1733.59 38 0.9 -1.0 0 4.3 -1.55 -1.7 0 45.0
3/00 1711.38 4.4 1.825 0.1 2.975 4.0 -1 -0.5 2.575 37.8
4/00 1697.27 5.6 3.175 2.0 4.575 3.8 0 0.8 4.2 33.3
5/00 1721.54 9.0 3.175 6.2 475 4.0 1 4.6 4.65 28.5
6/00 1737.25 10.1 1.825 8.2 4.575 4.9 1.55 6.6 4.2 29.8
7/00 1746.96 10.5 0.9 8.4 2.975 5.9 1.7 7.6 2.575 33.7
8/00 1765.09 9.2 -0.9 9.0 0 6.7 1.55 8.1 0 48.7
9/00 1762.72 8.5 -1.825 8.3 -2.975 7.3 1 7.4 -2.575 45.7
10/00 1768.82 8.1 -3.175 6.7 -4.575 7.5 0 6.1 -4.2 55.1
11/00 1764.80 7.0 -3.175 4.1 -4.75 6.9 -1 3.7 -4.65 54.8
12/00 1742.97 6.0 -1.825 34 -4.575 5.9 -1.55 2.6 -4.2 37.7




CMf -0.5324 -1.4421 -0.1267 -0.0330

CMphi 0.3349 0.3776 0.0371 0.0186

These forecasts are graphically depicted in the following diagram (Fig. 2)

Forecast, year 2000
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I~ (@) ~
—

Month of the year

FIG.2 - YEAR 2000
MODEL FORECAST (Series 1) FOR MID-MONTH DATES

Comparisons between measurements and model forecasts were also effected for years 1992
and 1995, in which cases the least-squares values of the calibration constants were slightly
different from those found for year 1998: this would seem to indicate —-assuming that the
mathematical model is reliable- either a drift phenomenon or some discontinuity in the dam
behaviour.

Successively, an analysis for the entire period of observation 1992-1998 was carried out using
a more refined model, in order to respond more accurately to the questions posed in the
framework of the present B.-W. This more complete application (which includes also a drift
model) and the relevant model will now be described.
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4 - THE MODEL ADOPTED FOR THE COMPLETE ANALYSIS OF THE SCHLEGEIS DAM
OATA

This model (which was defined by successive refinements tending to achieve smaller and
smaller deviations between displacements forecasts and measurements over the 1992-1999
calibration period) was based on an identification of the amount of the linear and the parabolic
components of the elevation-wise temperature distribution® (the monothermometric
coefficients having been computed both under the linear and the parabolic assumption).
Moreover, it was assumed that these relative amounts could be periodically variable during the
year and that it was better, for physical reasons, to keep these proportions distinct for the
upstream and the downstream thermometers; this refined formulation called for a total of 7
calibration constants for the thermal component of the displacement. A drift term was also
explicitly included in the model, based on the cubic splines described in FANELLI, GIUSEPPETTI
and MAZZA’, 2000; the period 1992 to 1999 was divided into ten equal intervals for the
purpose of drift identification . Taking into account the 13 constants required to define the
amplitudes of those splines and the single calibration constant of the impoundment
component, the total number of calibration constants for this second-generation model
amounted to 21. [It might be contended that, this number being quite large, the proposed
model is in practice not much different from a statistical one; however, it should be considered
that the structure of the model is derived from a rational, deterministic formulation and thus
ontains a deeper insight than a truly statistical approach].

In Figures 3 and 4 the main results of this analysis are presented.

S There being only two thermometric sections, these relative amounts could not be identified on the sole basis of the
temperature measurements. The guess adopted for the preliminary trial illustrated in paragraph 3.6, i. e. a parabolic law
with zero derivative at crest, could not be assumed without further proof and indeed produced greater deviations.

(This rather cumbersome formulation could be avoided altogether had the two thermometric sections been placed at
‘optimal’ elevations (approximately 1779.65 and 1719.65 for the Schlegeis dam), see FANELLY 2001].

11
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FIG. 4
Forecasts of the model, years from 1992 to 2000; for the period 1992-1998 also the
measurements are plotted

The above results call for some comments.

FIG. 3 - The correlation index between forecasts and observations (0.992) is satisfactory; the
differences between the model forecasts and the actual measurements appear to be
sufficiently small (standard deviation 1.597 mm); their Fourier transform is sufficiently flat, as
it is desirable insofar as the deviations should approximate a kind of ‘white noise’; their
frequency distribution, albeit satisfactory, departs somewhat from a Gaussian one, tending to
be flatter in the centre and more abruptly terminated in the extreme tails (apart from some
outliers). This fact, together with the visual inspection of the chronological diagram of the
differences, might suggest that the first two years (1992 and 1993) are not homogeneous with
the following ones’. In this connection some attempts were made to improve further the
model, excluding from the calibration period the first two years (calibration effected over the
period from 1994 to 1998); the results improved indeed, but only marginally (apart from the
frequency distribution of the differences, which became more markedly ‘normal-like’), so that
it was deemed not worthwhile to adopt this modified model as the ‘final’ one, nor to illustrate
in detail these results in the framework of the present paper.

The chronological behaviour of the identified drift is somewhat puzzling, presenting ‘ups and
downs’ that do not lend themselves to a clear physical interpretation; however, this behaviour
appeared to be remarkably stable in all the variants of the present model that were tried, thus
lending credibility to the result in question. The physical causes of such a behaviour remain,
however. to be investigated.

7 Which is plausible since during the first years after construction the thermal transient caused by the dissipation of the
cement hydration heat induces a thermal regime departing from the periodic one on which the present model is based.
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~IG. 4 - The model forecasts appear, at a visual inspection, to follow closely and without
appreciable time-lag the day-to-day chronological variations of the measurements over the
calibration period, thus proving on one hand the efficacy of the ‘monothermometric’ influence
coefficients, on the other hand the importance of including the effect of the time-derivative of
the measured temperatures. Maximum deviation is about 6.1 mm, but almost always the
deviations are much smaller than that (their standard deviation, as already mentioned, is
about 1.6 mm, i. e. about 3% of the amplitude of displacement variations). It remains of
course to be seen how well the model succeeds in following the 1999 and 2000 observations.

5 - SUMMING UP
In the present approach three favourable circumstances were taken advantage of in order to
drastically simplify the complexities of the thermal behaviour:

- the displacements, being integral quantities, are scarcely sensitive to local details of the
heat flow variations, so that even crude schematisations of the latter will give quite
accurate results provided they capture the predominant features of the physical
phenomenon;

- the slenderness of the crown section in arch dams suggests that, apart from
appreciable perturbations near the water-air-concrete interface, the heat flow across
the thickness is ‘almost everywhere’ predominantly one-dimensional along the
upstream/downstream horizontal direction;

- the variations in air, water and concrete temperatures show an appreciable degree of
periodicity from one year to the next one. The water level variations are of a less
regular nature.

Advantage was taken of these circumstances to effect a straightforward space-time separation
of the temperature variations and thus derive -with the help of adequate interpolation
functions effecting the passage from the discrete information provided by the installed
thermometers to a continuous distribution- coefficients of influence that could be computed
once and for all for the thermal components of displacements. The particular formulation
adopted allowed to build up influence coefficients each of which pertains to the temperature
variations of a single control thermometer (both the instantaneocus values and the relevant
instantaneous rates of change need be considered), whence the denomination
‘monothermometric influence coefficients’.

The whole procedure, furthermore, lends itself quite naturally to implementation in the
framework of simplified structural analysis codes for arch dams, such as the DESARC 3.2®
software package (although the latter was developed mainly for preliminary design and shape
~ptimisation rather than for monitoring activities).

.he application of these guidelines to the Schlegeis arch dam produced satisfactory results
(after calibration of the model constants) for the years from 1992 to 1998, in which both
external action data and displacement data were made available; some of the results obtained
in a preliminary trial (with only three calibration constants) were shown in the preceding
paragraph 3.6 , while a more complete analysis of the entire period from 1992 to 1998 (with a
drift term included and 21 calibration constants), as well as the relevant projections for the
years 1999 and 2000, were illustrated in paragraph 4.

While an eventual judgement of the practical value of the proposed approach will have to wait
until after the comparison of these last projections with observational displacement data
(undisclosed prior to the B.-W.) will have been effected, the simplicity and ease of
implementation of the procedure warrant, in the Authors’ opinion, further study and critical
appraisal. Meanwhile, a few practical suggestions can be drawn from the present exercise:

- at least two thermometric sections (but probably not more than three are needed)
should be used for deterministic modelling of thermal displacements, the uppermost
section being near the crest and the lowermost one near the dam/foundation interface;
in each section two thermometers are sufficient, one near to the upstream face and the
other near the downstream face, however, the coliocation of these thermometers both

14



as regards elevation and distance from the dam face should be carefully chosen in order
to optimise the model accuracy (see FANELLI 2001)8;

- the thermal diffusivity of the concrete should be known; alternatively, an estimate of
this coefficient can be obtained by identification methods if in at least one of the
thermometric sections there is at least one supplementary thermometer favourably
located;

- suitable numerical filters should be used to estimate, at each date of interest, the
instantaneous rate of change of the thermometric readings.
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7 (APPENDIX) - A POSSIBLE ALTERNATIVE APPROACH FOR THE CASE OF
ARBITRARILY VARYING TEMPERATURES

As already stated, the above presented model may suffer from growing inaccuracies the more
the yearly thermal cycle departs from a periodic one.

An alternative model exempt in principle from such limitations can be formulated (see FANELLI
and GIUSEPPETTI, 1981) from the knowledge of the dam’s ‘natural cooling modes’. In the case
of arch dams, again this model can be simplified thanks to the assumption of one dimensional
heat flow at the generic elevation. The corresponding formula for the temperature across the
generic horizontal section is then (the details are omitted for brevity):

HMx,t)=
X A9, (T ).sir ( Ei%i) +
X X
= (1 - 2)'9upﬂ ([) +— L dnml TZ[ ”g }L,X ( ( L j ([ o T)]

+ (_ 1)”+1 'Agdwn.\‘l (T ) Sin( ner.x )

(7.1)
\9"[”,(1) R (f) being the temperatures on the two faces at the elevation of the section,

and ASW( ) , A3y, ('c) the finite increments of the said temperatures over the finite

time step At .
It is evident, then, that new ‘monothermometric’ influence coefficients KM, ., KM, , can

be computed, based on the temperature distributions:
9,,(6.¢)===N, (¢ )sin(nr &),
' (7.2)
9(1,_/' ((C.: ’C:) = ;(_. 1)” 'Nm(j) (C )'Sin(n'ﬂ:‘é)

(evidently KM, = (~ 1)".KMM. ), such that the thermal component of displacement will be
given by:

)=6,0+3 ¥, k., Exp[_a( Lj( ))[AGW() 1) 88,6, 7.3)

t<sI n=1,2,.

¥ The importance of an ‘optimal” collocation of the thermometers is underlined by the fact that in the present model it
was found necessary (see § 4) to identify a posteriori the relative proportions of the elevation-wise linear and parabolic
components of the temperature distribution (as well as their time variations), which can be avoided by a judicious
collocation of the instruments.
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where § (t) is the displacement that would be caused by a pseudo-stationary temperature
distribution 9, (t)= ZN",(,)(C)‘[(1”5)‘91,,]3;,,'(1‘)”*5-9dwm,j(l')]/ and hence can in its turn be
-

expressed as a linear function of the running upstream and downstream temperatures, the
coefficients of this linear function being pre-computed monothermometric influence coefficients

based on temperature distributions N, ¢)yi-¢) N ()&

The drawback of this more general approach is that in principle it requires to compute lengthy
sums extended over the whole past thermal history, this necessity reflecting the physical fact
that stricto sensu the thermal component of any structural effect in a massive structure is a
functional of all past temperature values, rather than a function of the current values. (The
requirement to effect a sum also over all the infinite integer, positive values of n is a less
taxing one, thanks to the damping factor of the negative exponential, where n appears
squared).
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ABSTRACT: Numerical models for the simulation of the static behaviour of the
Schlegeis Arch Dam have been developed with reference to “Interpretation of
measurements results — Theme C”, formulated by Verbundplan. Two approaches have
been pursued: namely, a classical statistical model has been compared to a nonlinear
black-box model obtained with parametric identification techniques. In particular, a
polynomial NARX (Non-linear Auto Regressive with eXogenous input) model has been
employed. This model is shown to be better suited for prediction purposes of the
benchmark with respect to the statistical model.
Key Words: statistical models, black-box identification, NARX models, prediction

1 INTRODUCTION

Static monitoring of dams is traditionally performed by measuring input (causes) and
output (effects) variables, and correlating the data in a regression analysis framework.
Usually, the role of cause variables is attributed to environmental conditions, such as the
water level and the temperatures of the water, the air and specific points of the dam. On
the other hand, displacements, mostly measured at points on the crest, and openings of
contraction joints are chosen as output variables. Typically, static regression functions
arc determined which do not take the time variable into account: an istantaneous
relationship is assumed between input and output variables. In other words, variations
of an effect variable immediately follow the variation of a cause variable.

A more general approach would consider the dependency of output variables also on
past values of the input variables, yielding a dynamical model. In this view, the dam-
rock-reservoir system can be reasonably considered a dynamical model, though its
evolution in time is much longer than what is usually experienced in the dynamics of
structures.

To model the system’s dynamic behaviour classical black-box identification techniques
(Soderstrom and P. Stoica, 1988; Ljung, 1987; Johansson, 1993) can be successfully
employed. In particular, nonlinear NARX (Non-linear Autoregressive with eXogenus
input) models (Leontaritis and Billings, 1985a, 1985b) have been found to be extremely
effective for similar applications, where both prediction and simulation accuracy is
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required (see e.g. (Safak, 1991; Loh and Duh, 1996; Palumbo and Lancini, 1997a,
1997b; Pizzigalli, 1998; Palumbo and Piroddi, 2000, 2001)).

In this paper a polynomial NARX model has been identified on the Schlegeis Arch Dam
data. It is shown that such a model is well suited for the prediction purposes of the
benchmark.

2 STATISTICAL MODELS FOR STATIC MONITORING

Statistical modeling relies on the possibility of establishing a correlation between
vartables which act on the structure (cause or input variables) and the response of the
structure to these excitations (effect or output variables). In the problem at hand, the
radial crest displacement is assumed as the output variable, while the input variables are
the water level and the temperatures measured at various points of the dam. The existing
correlation between these variables is analyzed by means of a multiple linear regression
such that the output variable is obtained as a linear combination of the input variables.

In the model, the hydrostatic (f,«(r)) and the thermic (f;4(¢)) components appear
separately:

Y(O) = fipa )+ fen(1) . (D
The former is a polynomial of the water level, whereas the latter is defined by means
either of a sinusoidal function or of a linear function of the temperatures measured at
various points of the structure. The most accurate model found contains a 3™ order

polynomial of the water level and a linear function of 5 out of the 6 available concrete
temperature measurements:

Siya()=bo+ by Wyeye (D) + by Wypye (6 + bsWygye () | (2a)
Jn(®) = e1Taiz,up() + caTrrom(t) + e3Thiz,po() + calwsup(O) + esTaispo(f) ,  (2b)

where the parameter values are reported in Table 1.

PAR. VALUE PAR. VALUE

by 0.3930659 E+02 | ¢; —0.3104975 E+01
by 0.2611623 E+02 | ¢, —0.2878155 E+01
by —0.2834200 E+02 | c3 —0.9622283 E+01
b3 0.5850617 E+02 | ¢4 —0.1410552 E+01
Cs ~0.1825318 E+02

Table 1: Parameter values of the static model

The model is characterized by the following statistical parameters: the correlation index
R? has a value of 0.987 and the standard deviation of the residuals is equal to 1.434. On
the whole, the model achieves a quite satisfactory level of accuracy with respect to the
available data.
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There are some important reasons why a static model may be considerate inadequate. In
the first place, there is experimental evidence that at equal values of the water level the
crest displacement depends not only on the value of the concrete temperature, but also
on its derivative. In other words, there exists a dynamic effect which cannot be
accounted for by a purely static model.

Secondly, the determination of the nonlinear structure of the model is largely the result
of a trial-and-error procedure, which obviously cannot provide optimal results in any
sense.

Finally, the model requires 5 temperature measurements, which may well be considered
a redundant information (besides being costly).

3 THE ROLE OF DYNAMICS IN THE MODEL

The remarks at the end of the previous section point out the need to introduce dynamics
in the model. Besides, the static model (2) is effective mostly because of the
nonlinearity in the hydrostatic component. In view of this, a nonlinear dynamic
modeling technique must be applied. In this paper NARX (Nonlinear AutoRegressive
with eXogenous part) models are employed for this purpose (Leontaritis and Billings,
1985a, 1985b).

NARX models are the nonlinear generalization of the well known ARX models, which
constitute a standard tool in linear black-box model identification (Ljung, 1987;
Soderstrom and Stoica, 1988). These models can represent a wide variety of nonlinear
dynamic behaviours and have been extensively used in various identification and
control applications (see e.g. (Safak, 1991; Loh and Duh, 1996; Palumbo and Lancini,
1997a, 1997b; Pizzigalli, 1998; Palumbo and Piroddi, 2000, 2001)). NARX models are
formulated as discrete-time input-output recursive equations:

y() = f(t=1), ..., y(t=ny), u(t=1), ..., u(t-n,)) , 3)

where y and u are the output and input signals respectively, f{*) is a generic nonlinear
function and n, and n, are the maximum delays for the y and u terms, respectively.
Depending on how function f{*) is represented and parameterized, different NARX
model structures and - consequently - identification algorithms are derived.

A particularly interesting class of NARX models is obtained when f{) is a polynomial
function of its arguments: in other words, y(f) comes from a linear regression of terms
(regressors) obtained as products of powers of past values of y and u. In fact,
polynomial NARX models are /inear-in-the-parameters, so that they can be identified
with simple algorithms of the Least Squares family and relatively small effort.

4 THE NARX MODEL IDENTIFICATION PROCEDURE

Many efficient techniques have been introduced for the identification of polynomial
NARX models (Korenberg et al., 1987; Leontaritis and Billings, 1987; Billings ef al.,
1989; Aguirre and Billings, 1995; Mao and Billings, 1997). Typically, an iterative
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procedure is used: at each step the model structure is modified by adding a regressor
chosen in a given family with a convenient criterion, then the parameters of the
augmented model are estimated by an identification method of the Least Squares (LS)
family; the procedure ends when a specified level of accuracy is reached. Thus, the
model structure and parameters are estimated jointly.

As is commonly done in the classical model identification framework, these algorithms
select the optimal model with respect to prediction accuracy. This is unsuitable for our
long range prediction application, where recent past values of the output variable (the
radial crest displacement) are not available in the 1999 to 2000 period range. Therefore,
a slightly modified identification algorithm will be employed here, which is based on
the minimization of the simulation error, ie. of the difference between y(¢) and its
estimate computed on the basis of the estimated values of y and of the real values of
up to 1.

In detail, the identification algorithm consists of the following steps:

1. Initialization - To initialize the procedure, it is necessary to provide a set of [/O
data and the set of possible regressors that will be evaluated for inclusion in the
model.

2. Iteration (part 1: addition) - Regressors not present in the current model are
examined for possible inclusion. For each candidate regressor, the current model is
augmented with it, the resulting model is estimated with Least Squares and
evaluated in simulation. The first regressor is accepted which makes the simulation
error variance decrease at least by a specified percentage with respect to the current
model. If the candidate regressor set is exhausted, the best regressor found is
accepted anyway.

3. Iteration (part 2: pruning) - When a regressor is added, an iterative pruning
subprocedure is performed: for each model regressor, the submodel obtained by
eliminating that regressor is estimated and evaluated. If the best reduced model still
makes the simulation error variance decrease with respect to the previous major
iteration, it becomes the current model. The subprocedure is repeated until no
regressors can be eliminated without a performance loss with respect to the previous
major iteration.

4. Stop criterion - The procedure is stopped when a specified accuracy is obtained or
after a given maximum number of iterations.

Overall, the combined addition/pruning procedure aims at increasing accuracy while
preserving (or even reducing) the number of parameters, thus enforcing the rationale
that a parsimonious model is always preferable for robustness reasons. In fact, as the
model complexity increases in terms of number of parameters its ability to explain the
identification data also improves, but over a certain level of accuracy the robustness of
the model starts to decrease, in the sense that the model becomes less and less
generalizable to other data sets of the same system.

The standard deviation of the mean square simulation error
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S ) =y OF

FIT =/ 4
I )

will be used in the sequel as a performance index for the evaluation of the model
quality. In Eq. (4) N is the number of data samples, y(¢) and yspff) are the measured
output and the response calculated from the model in simulation mode, respectively.

5 EXPERIMENTAL RESULTS

Previous experience in static modeling of dams has shown that the input-output
dynamics of the system can be described with good accuracy by means of NARX
models with nonlinearities only in the exogenous part (Palumbo and Lancini, 1997b). In
view of this, NARX models of this type with multiple inputs will be employed in the
following.

A crucial step in the identification algorithm is the definition of the set of possible
regressors that the algorithm must select for inclusion in the model. This set defines the
family of possible model structures which can be considered by the identification
algorithm. For obvious computational reasons, it is important to limit the dimension of
this set. Previous experiences (Palumbo and Lancini, 1997b) together with the statistical
model developed in Sect. 2 yield some useful indications for this task. In particular,
nonlinear terms up to the 3™ order have been considered for the water level only and
cross-terms involving different inputs or the input and output signals have been
excluded. Also, various identification attempts with models of different structure have
shown that no significant improvement of the FIT criterion is obtained if more than two
inputs (the water level and one of the concrete temperatures) are used. In particular, the
most cffective temperature measurement was experimentally found to be Ty po: the
other temperature measurements are considered redundant for the aim of monitoring the
dam.

Finally, for numerical reasons the mean has been removed from all the (linear and
nonlinear) regressors: better simulation results have been obtained with the models
identified with zero-mean regressors.

A 10 parameter NARX model has been identified. The maximum delay of the
regressors is 2, so that the model defines a nonlinear 2™ order difference equation (1-
DOF model)

W0 = f(t=1), y(t=2), y(=1), ui (1-2), 12(t=1), ua(1-2)) ()

where f{*) is a polynomial function of its arguments, y(¢) is the radial crest displacement,
u)(¢) 1s the water level and uy(f) is the temperature 7Ty po. More precisely, the identified
model has the following structure:

V(1) = ay(i=1) + app(t-2) +
+ by (t=1) + bioas (t=2) + boguy (1=1) + byguay(1=2)7 + bajuy (=1 + byouy (£=2)° +
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+ Cluz(f*—l) + Czuz(f-—Z) 3 (6)
where the values of the coefficients a;, by and ¢; are listed in Table 2. Notice that the

hydrostatic and the thermic effects can still be separated. In fact, equation (6) can be
viewed as a linear 2™ order model with two imputs, wy and wy:

Y(8) = ap(t=1) + ap(t=2) + wi(t=1) + wy(=1) , (7a)
where

Wl(l‘) = [)111!1(f) + 512111(1—1) + bzlllI(f)Q + bzzlll(t_nz + b311’1(f)3 + ])32“10—1)3 > (7b)
wol(t) = crua(f) + coup(t=1) , (7¢)

to which the Principle of Superposition applies. Therefore, the hydrostatic effect is the
solution of equation (7a) with wy(r) = 0, while the thermic effect is correspondingly
obtained with wi(r) = 0. The overall output is simply the sum of these two solutions.

MODEL ESTIMATED

COETFFICIENT VALUE

ai 1.060 E+00
a —9.370 E-02
by 4.353 E-01
blz -4.124 E-01
by 4.825 E-03
by ~4.538 E-03
b3 1.861 E-05
b3 —-1.702 E-05
C ~1.535 E-01
¢ 8.692 E-02

Table 2: Regressors and estimated parameter values of NARX model

The overall performance of the model is summarized by a value of the FIT index of
1.493. The model accuracy in simulation can be appreciated in Fig. 1.

As already pointed out, the model estimations and the resulting simulations have all
been performed using zero-mean signals, i.e. the mean value (computed on the first
2557 data) has been subtracted to y(£), ui(?), (£, u,(£)° and uy(?) 1n equation (6).
Therefore, to obtain comparable values of the model outputs it is necessary to add a
posteriori a value of 45.8625 mm to y(f) (clearly, this operation must be repeated also
for the predicted values relative to the time period 1999-2000).

If the maximum delay associated to the exogenous terms in the NARX model is
increased, i.e. longer time dependencies are allowed in the model, even more accurate
models can be obtained, at the cost of an increased size of the model and of a longer
identification procedure. Similar results can be obtained if cross-terms are allowed to
appear in the regressor set which defines the possible model structures.
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However, the improvements in terms of the FIT criterion are not so significant to justify
the model dimension increase. In fact, as already discussed, as the model complexity
increases, the identified model will reproduce all the more accurately the data used for
the identification itself while being less capable of generalizing to alternative data sets.
In this application, where a long term prediction accuracy is requested, the robustness
issue is crucial and this phenomenon (usually termed overfitting) must be prevented at
all costs.
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Figure 1: Stmulation performance of NARX model

In the proposed identification algorithm the growth of the model complexity is
somewhat limited by the pruning phase. However, a more systematic way to prevent the
occurrence of overfitting can be applied if the available data are divided in two sub-sets:
the identification data set and the validation data set. Then, the first data set only is used
for the estimation of parameters, while the second one is used to monitor the identified
model performance on data not used in the estimation phase. In this way, the
identification procedure may be stopped when the selected model achieves the best
average performance on both identification and validation data.

To test the validity of the model structure found by the identification algorithm the
following test has been performed. The model parameters have been re-estimated using
only the first 90% of the available data, and the performance of the identified model has
been measured on the remaining 10% of data: apparently, the model accuracy does not
degrade in the last part of the data set. Indeed, the value of the FIT, g, index obtained in
the last 10% of the data is equal to 1.218, which is comparable to - and even better than
- what obtained in the sub-set of the data set used for the identification phase (FITgp, =
1.477). This shows that the model structure selected by the identification algorithm is
indeed robust, i.e. capable of generalizing to data not used for parameter estimation.
This is a good clue that the model can be confidently used for long range prediction.
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6 CONCLUSIONS

Two numerical models for the simulation of the static behaviour of the Schlegeis Arch
Dam have been developed following two different rationales. A classical statistical
approach was used to derive a 9-parameter model, where the hydrostatic and the thermic
components appear separately. The former is obtained as a 3 order polynomial of the
water level, whereas the latter is a linear combination of 5 concrete temperature
measurements.

A dynamical NARX model has also been developed using a novel identification
algorithm. The model nonlinear structure is selected automatically by the algorithm,
which explores a set of possible model structures defined by the user also on the light of
what obtained with the statistical approach. The robustness and generalization capability
of the NARX model are demonstrated experimentally.

The NARX model requires 10 parameters, but only one temperature measurement. The
hydrostatic and thermic effects can still be computed separately.
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