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The problem statement shall consist of the static and seismic stability assessment of a three-dimensional 
multi-facetted rock "wedge" of an arch dam abutment. Firstly, dam-rock interface forces shall be 

evaluated from a finite element model and then, abutment stability assessments shall be performed using 
conventional (Londe Method) and/or finite element techniques. 
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1 Acknowledgement 
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2 Executive Summary 
The proposed benchmark is aimed at abutment stability analyses of three-dimensional wedges 
typically encountered for the rock foundations of arch dams. The loading regime to be evaluated 
is firstly static (self-weight and hydrostatic pressure) and then seismic (three component 
acceleration-time histories applied in the orthogonal directions of the dam axis). The wedge 
geometry shall be delimited by three planes of which one shall be a back-plane and the other 
two by predominant geological formations in the rock structure. 

The interest in such a benchmark is firstly to allow concrete traditionalists to review another 
aspect of arch dam stability and encourage geologically minded colleagues to reflect on the 
analytical problems encountered in arch dam engineering. 

The first step of the analyses shall concentrate on the interface forces between the concrete 
dam and the foundation and how these forces are determined and then applied to the wedge for 
static and seismic loading. 

Static loads shall then be applied to the wedge to ascertain the factors of safety under different 
geomechanical material properties. Sensitivity analyses are encouraged. 

Seismic loading shall be applied in three orthogonal directions and similar safety analyses 
applied over the time history. The participant is asked to reflect on the design criteria which are 
suggested and the methods of analyses to evaluate the permanent post-earthquake resultant 
displacement. The Newmark method is proposed and the participants are encouraged to review 
underlying assumptions of the method related to multi-directional movement of a rigid block. 
Indeed, all aspects of this traditional method are open to discuss and review through the 
common problem statement to be investigated by the participants.  

It is emphasised that the participant is positively encouraged to develop on the standard 
methods of abutment stability and to demonstrate how state-of-the-art computational aspects of 
analysis and design of dams can be applied to the problem. The methods of analyses are not 
restricted to finite elements; discrete rigid and deformable elements can also be applied for 
example. 

The results from each of the participants shall be reviewed and compiled in a general report to 
allow both new and old “hands” to these types of problems to gain a rapid first experience from 
the benchmark. 
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3 Problem statement 
The Luzzone double curvature arch dam located in the south eastern part of Switzerland has 
been selected for the benchmark, figure 2.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Luzzone Dam (Switzerland), H = 225 m. 

The location and main characteristics of the structure are presented in appendices 1 and 2. 
The dam was built in the sixties and heightened in the ninetieths. The behaviour of the structure 
is sound and normal, but presents some interesting aspects for the dam engineering 
community. 

The structure originally started its design life as a relatively classic arch dam parabolic layout 
until during the construction, a family of decompressed joint structures on the left bank opened 
and provoked an instability which had important consequences on the geometrical definition of 
the dam and the stability of the abutments. For the upper section of the dam, a geometric 
rotation was applied. The above figure reveals that the left bank has both an unusual upper 
elevation abutment and section closure for the 17 m heightening. 

The problem statement consists of the static and seismic stability assessment of a three-
dimensional multi-facetted rock "wedge" on the left bank of the Luzzone arch dam abutment. 
Dam-rock interface forces shall be evaluated from a finite element model and then, abutment 
stability assessments shall be performed using conventional (Londe Method) and/or finite 
element techniques. 

  

El. 1610.20 m.a.s.l.

North 
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3.1 Wedge Definition 

3.1.1 Overview 

The right bank geological features do not present kinematically feasible wedges and are 
therefore classified as verified. The left bank presents only two geological features (joints, J1 
and J2) that are deemed as presenting a realistic wedge with the potential for sliding and 
therefore verifications are necessary. 

Heightening studies verified the important of drainage and demonstrated that the factor of safety 
could be important by an order of 1. 

3.1.2 Geological characteristics 

The Luzzone valley extends in the North-east /South-west direction parallel to the geological 
features defined by a zone of sedimentary and metamorphic rocks which are located between 
the crystalline formations of the Saint-Gothard and the pennique layers. 

The dam and the rock slopes immediately upstream for the first 500 m on the right bank are 
situated on the Sosto schist formations which have a dip of 25 to 35° towards the east forming a 
tectonic element which are separated from the other pennique features that extend towards the 
south. 

The Sosto schists are composed of marble, limestone-silicate schists and micas and phyllite 
micas. The rock mass does not present any distinctive planes of schistosity and a general 
stratification is not visible. 

The Sosto schists are in general slightly fractured. In the abutment areas of the dam, the upper 
surfaces of the rock contain decompressed diabase which is generally parallel to the slopes (J1 
system). Additionally, two tectonic diabase systems are visible; J2 which is inclined towards the 
North-west and the second J3, towards the North-east. 

The decompressed diabase rock formations are predominant on the left bank as is evident from 
the relatively large seepages observed on the left bank as compared to the right bank. 

On the left bank above elevation 1500 m.a.s.l., the arch abutment is founded on a thick mass 
concrete wall and the downstream face of the rock apron is sub-vertical. 

The schist rock formations of the apron are of a good quality and the weak schist was removed 
during the excavation stages of the dam foundation. 

Two main diabase formations have been recorded by the Geologist, Aperta and Chiuaa which 
can lead to similar wedge sliding as observed during the excavation of the foundation (year of 
1959). 

The geomechanical properties of the rock formations are as presented below. 
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Table 2.1 Dam Mass Concrete and Rock Properties 

 

Geometric arrangement of the wedge is presented below. 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 Three-dimensional wedge arrangement 

Topography 

Joint J1, area A1 
Joint J2, area A2 

Dam thrust force 
Uplift, U3 

U1 

Horizontal plane Jh, area A3 

U2 

N 

Self-weight 

Material Modulus Poisson Dry 
density

Cohesion Friction Dip Dip dir’n Damping

(E) ( ν ) ρ (A t ) (A w ) Uplift (c) ( φ ) (α ) ( β ) ( ζ )
GPa kg/m3 m2 m2 % MPa ° ° ° %

Mass Concrete       27.00       0.167       2'400               -               -               -             -               -               -   

5                
Diabase       25.00       0.200       2'600               -               -               -  Variable  40–42             -               -   5              
J 1             -              -                  -     33'907     23'300          100  Variable  40–42  50-90  005-350 5                
J 2             -              -                  -     10'811       7'200          100  Variable  40–42  50-76  280-295 5                
J h             -              -                  -     28'650     28'650          100  Variable  40–42             -       360.00 5                

J 1 Benchmark             -              -                  -     33'907     23'300          100             -         35.00       65.00         5.00 5                
J 2 Benchmark - crack             -              -                  -     10'811       7'200          100             -               -         76.00     280.00 5                
J h Benchmark - 1510             -              -                  -     28'650     28'650          100             -         35.00             -       360.00 5                

Notes:
Subscripts ‐ s  = static

r  = flexural strength (prismatique beam)
d  = dynamic
t  = total plane surface area
w  = wet plane surface area (below reservoir elevation)
1  = plane 1
2  = plane 2
h  = horizontal plane (elevation indicated)

Foundation modulus refers to deformation modulus and for dynamic analyses taken as zero (massless)
Concrete modulus refers to modulus of elasticity
Damping is the percentage of critical damping

Wedge volume = 1.92 x 106 m3

Be
nc
h

Wedge Characteristics
Wedge volume = 1.92 x 106 m3

A
ct
ua

l



COMPUTATIONAL ASPECTS 
OF ANALYSIS AND DESIGN OF DAMS 
Tenth Benchmark Workshop on Numerical Analysis of Dams 
Theme C “Stability of a dam abutment including seismic loading” 

9017/4001  
Page 5  

   

 

 

The wedge presented in figure 2.2 is formed by a horizontal plane due to the inexistence of 
other joints that could produce a cinematically feasible wedge. The horizontal plane may vary in 
depth between elevations 1510 to 1570 m.a.s.l. Below 1510 m.a.s.l., the wedge volume is 
deemed to be too large to cause foundation instability. 

For the Benchmark, the horizontal plane shall be considered only at elevation 1510 m.a.s.l. 

Review of the geometric formations indicates that two wedge types could be defined. Type A 
shall be defined by two joint sets (J1 and J2) and a horizontal plane. Type B consists of only two 
planes (J1, vertical plane and the horizontal plane) whereby J1 is defined by the maximum 
possible dip values of 90°. These wedge types are presented below. 

For the Benchmark, only the Type A wedge shall be analysed (three planes). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 Wedge Types – A (3 planes) and B (2 planes) 

 

 
  

Type A Wedge (3 planes) Type A Wedge (3 planes) 

Type B Wedge (2 planes) 

Jh 

Jh 

Plane orientation 

Plane orientation 
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4 Data Preparation 
The participants of the benchmark Theme C are provided with the data listed in Appendix 3. 
(digital format). The information below gives an overview of the data. 

4.1 Dam and Foundation Bodies 
Geometrical and finite element model: Dam and foundation only (without reservoir). 

 

 

Dam and Foundation Finite Element Mesh 

 

 

 

 

Dam Finite Element Mesh 

Figure 3.1 Dam and Foundation Finite Element Mesh 

The main data is in text (ASCII) format with free formatting and can be found in 
ThemeCModel.fga. The model was originally generated using the DIANA software package for 
which more information can be found on the web (www.tnodiana.com). 

The file has been structured in such a way to facilitate modelling, analyses and evaluation of 
results. The detailed description of the ThemeCModel.fga file is given in Appendix 4. 

For information purposes only, Appendix 5 provides the participants with three standard cross-
sections. 

4.2 Wedge Topographical and Geometric layout 
The topographical and geological data for the selected wedge to be used in the benchmark are 
given in appendix 12. The volume of the wedge has been estimated as 1.92 x 106 m3. 
Depending on the method of analysis, the participant is free to model the wedge using finite 
elements and/or other types. 

  

Wedge location 
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4.3 Dam and Foundation Interface 
Special importance is given to the interface between the dam and the foundation which is 
named INFACE. The labelled geometrical points (entity name) are given in Appendix 6 with 
global coordinate values (X, Y, Z). 

Since only the left bank abutment wedge stability above elevation 1510 m.a.s.l. is relevant to 
the benchmark, Appendix 7 presents the node numbers and global coordinates for this area.  

For reference and evaluation purposes, the geometrical surface entity numbers for the left 
abutment are also provided in Appendix 7. 

4.4 Seismic data 
Three stochastically independent acceleration time-histories are provided as described in 
Appendix 8. The time step is 0.01 second, duration 30.71 seconds giving a total number of 
3072 time steps. The peak ground accelerations in the cross valley, vertical and upstream-
downstream directions are 0.12g, 0.93g and 0.93g respectively and appendices 9, 10 and 11 
present the graphs. The scaling factors applied to these values are given in the format in the 
ThemeCModel.fga data file. Hence, the following peak ground acceleration values shall be 
applied: 

1. Downstream-upstream (Z - direction) :  + 0.16g 

2. Vertically upwards (Y – Direction) :   + 0.1067g 

3. Cross-valley direction L - R (X – Direction)  :  +0.16g 

The vertical peak ground acceleration is two-third (0.6667) of the horizontal components. 

The participant is free to convert the time histories into the frequency domain, but this is not 
recommended for stability analyses.   
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5 Methodology 

5.1 Modelling 
Based on the data provided and as described in the preceding chapter, the participant is asked 
to model the dam and foundation structure using finite elements and/or any other numerical 
modelling technique (for example discrete elements). The extent of the foundation has been 
defined to minimise constraint effects (static and dynamic loading) for different degrees of 
restraints (translations and rotations) and also to allow the selected volume of wedge in the 
foundation to be modelled using any method. 

Sufficient data have been provided to numerically model the wedge in the case that a Londe 
type solution is not desired. The structure of the mesh using for example interface elements 
along sliding planes and solid elements etc. shall be the choice of the participant. 

Once again, the participant is free to modify the mesh for example refinement, element types, 
etc.; however the geometry of the problem shall remain unchanged. 

The dam body and foundation have been separated into five construction stages to allow a 
reasonable computation of the self-weight loading. 

5.2 Material parameters 
The material parameters for the mass concrete dam and the foundation (material zoning) are to 
be defined in accordance with table 2.1. Uniform properties (diabase) are assumed for the 
entire rock foundation for simplicity and the concrete dam shall be treated only as mass 
concrete (no facing and/or interface concrete). 

The influence of softening elements along the upstream dam-rock interface can be defined 
freely if the participant desires to reduce the effects of stress discontinuities. Such elements are 
normally defined just in front and/or as part of, the grout curtain (first top layer of foundation 
elements). 

The layout of the topography, major rock joints and determinant cross sections (used for volume 
calculations only) are given in Appendix 12.  

5.3 Boundary conditions  
The boundary conditions for the finite element model are defined in accordance with the model 
data file and selected such as to minimum their influence on the results for static and dynamic 
loading conditions. 

5.4 Loading 
The static loading (self-weight and full hydrostatic pressure = 1610.20 m.a.s.l.) shall be 
computed and applied as initial conditions for the dynamic loading. The latter can be evaluated 
using any method (modal, direct time integration etc.). 
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5.5 Approach to the analyses 
The conceptual approach described by Newmark in reference [1] can be applied. The basic 
understanding is that permanent displacements are accumulated for the case when the critical 
acceleration has been exceeded. The double integration of the computed accelerations shall 
produce these displacements. 

The manner in which the critical acceleration is computed and the fundamental reasoning 
behind Newmark’s Method, are the essential subject for discussion. Hence, we are not only 
interested in obtaining numerical solutions, but also the participant’s views on the subject. 

Other methods of solving such stability problems are also encouraged. 

6 Results 
The participants shall produce results in the format given in Appendix 13 and give their own 
evaluations/recommendations for future benchmarks based on the same Theme C. 

7 References 
1. Prof. N. M. Newmark, “Effects of Earthquakes on Dams and Embankments”, published in 

Geotechnique, “Milestones in Engineering”, Vol. 15, N°. 2, pp.109 – 129, 1965. 

2. P. Londe, “Une method d’analyse à trios dimensions de la stabilité d’une rive rocheuse”; 
Published in Annales des Ponts et Chaussées, Vol. 1, pp.37 – 60, 1965. 

 

STUCKY Ltd 

  

Dr. Russell Michael GUNN 
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App. 1 Location

Luzzone Arch Dam ‐ Characteristics

North

Theme C Stability of a dam abutment including seismic loading.xlsx Dr. R.M.Gunn (10.04.2009)Theme C Stability of a dam abutment including seismic loading.xlsx Dr. R.M.Gunn (10.04.2009)
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App. 1 Location

Luzzone Arch Dam ‐ Location ‐ Reservoir, Dam and FE Mesh Overlay

Theme C Stability of a dam abutment including seismic loading.xlsx Dr. R.M.Gunn (10.04.2009)Theme C Stability of a dam abutment including seismic loading.xlsx Dr. R.M.Gunn (10.04.2009)
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App. 2 Characteristics

Luzzone Dam ‐ Characteristics 

Description Units Old dam 
(< 1995)

New dam

Type

Maximum above the foundation m 208.00              225.00             

Crest length m 530.00              510.00             

Maximum thickness (crown) m

Freeboard m 2.30                   4.20                  

Elevation normal m.a.s.l. 1'591.00           1'606.00          

Normal operation elevations m.a.s.l. 1'592.40           1'607.00          

PMFreservoir elevation m.a.s.l. 1'607.60          

Maximum reservoir level including u/s block sliding m.a.s.l. 1'610.20          

Minimum operation elevation m.a.s.l.

Elevation of the bottom outlet m.a.s.l.

Parapet elevation m.a.s.l. 1'593.30           1'610.20          

Dam concrete volume m3 1.33 x 106 1.40 x 106

Grout curtain depth m 165.00 165.00

Grout curtain surface area m2 74'100.00         77'320.00        

Normal volume of the reservoir m3 88 x 106 108 x 106

Maximum volume of the reservoir m3 90 x 106 112 x 106

Live load volume m3 87 x 106 107 x 106

Reservoir basin area km2 1.27                   1.44

Double curvature arch dam

36.00                                             

1'435.00                                        

1'407.70                                        

Theme C Stability of a dam abutment including seismic loading.xlsx Dr. R.M.Gunn (10.04.2009)
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App. 3 List of Supplied Data

List of Supplied Data (ASCII Text Format)

Item Name Description
1 ThemeCModel.fga Model data in ASCII format containing all geometrical, finite element, 

material property definitions (static and dynamic ‐ Rayleigh damping), 
boundary conditions and loading.

2 eqt1.tcv Acceleration‐time history in direction 1 (Global X‐direction)
3 eqt2.tcv Acceleration‐time history in direction 2 (Global Y‐direction)
4 eqt3.tcv Acceleration‐time history in direction 3 (Global Z‐direction)
5 botsurf.dat Compressible fluid parameters: Speed of sound in water and reservoir 

bottom absorption (Supplied for Information )
6 csound.dat Compressible fluid parameters: Speed of sound in water  (Supplied for 

Information )
7 farfield.dat Compressible fluid parameters: gravitational acceleration, far‐field 

absorption  (Supplied for Information )

Theme C Stability of a dam abutment including seismic loading.xlsx Dr. R.M.Gunn (10.04.2009)
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App. 4 Data Description

Description of Geometry and Finite Element Model Data Structure and Formatting

Reference: ThemeCModel.fga
Creation software: DIANA Version 9.2, 2008

File Number Lines Command Entity Description
 4 ‐ 57 CONSTRUCT SET OPEN Define sets for easy pre and post‐processing

SURF1 Excavated topographical surface
SURF2 Water face
SURF3 Air face
SURF4 Bottom of topographical surface
SURF5 Foundation limit boundary surface (4 sided box)
SURF6 Foundation limit boundary surface (4 sided box)
SURF7 Foundation limit boundary surface (4 sided box)
SURF8 Foundation limit boundary surface (4 sided box)
DAM Dam body
FOUND Foundation body
INFACE Interface zone between dam and foundation
CREST Crest surfaces
SURF2M Water face post‐processing ‐ developed views!
BORDS Sum of external boundaries surf 4,5,6,7,8
DAM1 Dam construction stage 1
DAM2 Dam construction stage 2
DAM3 Dam construction stage 3
DAM4 Dam construction stage 4
DAM5 Dam construction stage 5
XSECT1 Crown cantilever x‐section 1
XSECT2 Left bank wing x‐section 2
XSECT3 Right bank wing x‐section 3
FLUSTR Fluid‐structure interface
FLUID Reservoir body
FFSURF Far‐field surface

Theme C Stability of a dam abutment including seismic loading.xlsx Dr. R.M.Gunn (10.04.2009)
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App. 4 Data Description

Description of Geometry and Finite Element Model Data Structure and Formatting

Reference: ThemeCModel.fga
Creation software: DIANA Version 9.2, 2008

File Number Lines Command Entity Description
FREESURF Reservoir free surface
BOTSURF Reservoir bottom surface

 58 ‐ 11901 GEOM POINT P1  X Y Z Geometry point 1 defined by Cartesian co‐ordinates X, Y, Z
X Horizonal Direction ‐ Crown to Right positive
Y Elevation ‐ Vertical direction upwards positive
Z Horizonal Direction ‐ Downstream ‐ upstream positive

 11902 ‐ 15980 CONSTRUCT SET APPEND Append geometric part to set name
 15981 ‐ 16001 PROP MAT NAME  ELASTIC  ISOTROP Define material property NAME Elastic Isotropic values of E = 25 GPa and ν = 0.18

PROP MAT NAME  MASS     DENSITY Define material property NAME Mass density kg/m3
PROP MAT NAME  DAMPING  VISCOUS Define material property NAME dynamic viscous Rayleigh parameters 0.6 and 0.01
PROP MAT NAME  FLOW     ISOTROP Define material property NAME thermal conductivity 2.2222 and capacitance = 0

PROP MAT NAME  THERCONC ISOTROP Define material property NAME thermal expansion coefficient of 10‐5

PROP MAT WATER    EXTERNAL EXTERNAL Define material property NAME with external file NAME

 16002 ‐ 22256 GEOM LINE STRAIGHT NAME Pname Pname Define straight line between two points with line division (not important)
 22257 ‐ 30749 CONSTRUCT SET APPEND Append geometric part to set name
 30750 ‐ 34869 GEOM SURF 4SIDES NAME L1 L2 L3 L4 Define a surface with 4 sides using lines Lx ‐ Lx+4

GEOM SURF 3SIDES NAME L1 L2 L3 Define a surface with 3 sides using lines Lx ‐ Lx+3
 34870 ‐ 40269 CONSTRUCT SET APPEND Append geometric part to set name
 40270 ‐ 40994 GEOM BODY 6SUR NAME SF1, SF2, SF3 … SF6 Define a body with 6 surfaces NAME, Surface names SFx ‐ SFx+6

GEOM BODY 5SUR NAME SF1, SF2, SF3 … SF5 Define a body with 5 surfaces NAME, Surface names SFx ‐ SFx+5
 40995 ‐ 41896 CONSTRUCT SET APPEND Append geometric part to set name

Theme C Stability of a dam abutment including seismic loading.xlsx Dr. R.M.Gunn (10.04.2009)
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App. 4 Data Description

Description of Geometry and Finite Element Model Data Structure and Formatting

Reference: ThemeCModel.fga
Creation software: DIANA Version 9.2, 2008

File Number Lines Command Entity Description
 41897 ‐ 42300 MESHING TYPE NAME QU8 Define mesh type as 8‐node quadrilateral surface element

MESHING TYPE NAME TR6 Define mesh type as 6‐node triangular surface element
 42301 ‐ 43025 MESHING TYPE NAME HE20 Define mesh type as brick element with 20 nodes

MESHING TYPE NAME PE15 Define mesh type as wedge element with 15 nodes
 43026 ‐ 43932 PROP ATTACH NAME material NAME Attach material property for entity NAME to material NAME

 43933 ‐ 43935 PROP BOUNDARY CONSTRAINT CO1 NAME X Define boundary constraints for NAME with constraints X
Note : X refers to constraints X,Y,Z translations and RX, RY and RZ rotations
which can be accumlated such as 123456 means X Y Z RX RY RZ

 43936 ‐ 43970 CONSTRUCT TCURVE NAME LIST FILE NAME              Construct a time curve NAME from filename NAME
CONSTRUCT TCURVE NAME TSHIFT tsh TSHIFT shifts the LIST curve by adding tsh to all times
CONSTRUCT TCURVE NAME ASHIFT ash ASHIFT shifts a LIST curve by adding ash to all amplitudes
CONSTRUCT TCURVE NAME TSCALE tsc TSCALE scales a LIST curve by multiplying all ties by tsc
CONSTRUCT TCURVE NAME ASCALE asc ASCALE scales a LIST curve by multiplying all amplitudes by asc
CONSTRUCT TCURVE NAME TSTART value TSTART overrides the start time of a LIST curve by TSTART
CONSTRUCT TCURVE NAME TSTOP value TSTOP overrides the end time of a LIST curve by TSTOP

 43971 ‐ 43995

PROP INITIAL INIPOT NAME SET value Define initial property NAME for temperature load, value
PROP LOAD GRAVITY NAME 1 SET = ‐9.8100 2 Define gravitational load NAME to set NAME, value, direction
PROP LOAD PRESSURE NAME 2 SURF2M = Define hydrostatic pressure
2.16801E+06 0
PROP ATTACH NAME HYDC1  Attach space curve HYDC1 to NAME
PROP LOAD BASE EQ1 3 ALL = 1.000 1 Define base load excitation EQ1 as loadcase 3, all parts, value = 1, direction

X = 1, Y = 2, Z = 3

CONSTRUCT SCURVE NAME GLOBAL Y LIST = EL 1 
value EL 2 value 

Construct a space curve NAME using GLOBAL Y LIST = Start elevation, value Stop elevation, 
value 
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App. 4 Data Description

Description of Geometry and Finite Element Model Data Structure and Formatting

Reference: ThemeCModel.fga
Creation software: DIANA Version 9.2, 2008

File Number Lines Command Entity Description
PROP ATTACH EQ1 EQT1     Attach property EQ1 to time curve EQT1
PROP LOAD FIXPOT LC6 6 SURF2 = 10 Define inital temperature of 10° on surface 2 and attach it to a time curve
PROP ATTACH LC6 EQT4

 43996 ‐ 44000 UTILITY SETUP UNITS LENGTH METER        Define analysis units
UTILITY SETUP UNITS MASS KILOGRAM    
UTILITY SETUP UNITS FORCE  NEWTON      
UTILITY SETUP UNITS TIME  SECOND      
UTILITY SETUP UNITS TEMPERATURE  CELSIUS

Theme C Stability of a dam abutment including seismic loading.xlsx Dr. R.M.Gunn (10.04.2009)
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App. 5 X‐sections

Luzzone Dam Model ‐ X‐section locations and definitions

Theme C Stability of a dam abutment including seismic loading.xlsx Dr. R.M.Gunn (10.04.2009)

X‐section 3 (Right bank)

X‐section 1 (Crown)

X‐section 2 (Left Bank)
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App. 6 Interface Points

Luzzone Dam Model ‐ Interface Point numbering and global coordinates (General Overview)
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App. 6 Interface Points

Luzzone Dam Model ‐ Interface Point numbering and global coordinates (Tabulated interface coordinates ‐ Left Bank)
Entity Name X Y Z Entity Name X Y Z
P810 ‐235.7 1592 ‐187.08 P1696 ‐142.02 1499.2 ‐74.585
P1339 ‐224.01 1592 ‐193.09 P2643 ‐137.96 1525 ‐128.54
P813 ‐221.7 1578.2 ‐191.1 P2015 ‐130.37 1504.8 ‐94.518
P1338 ‐213.08 1580.5 ‐196.23 P2450 ‐121.18 1490.3 ‐59.359
P1424 ‐212.33 1592 ‐199.11 P2765 ‐118.73 1510.5 ‐114.45
P837 ‐207.69 1564.4 ‐195.12 P2474 ‐110.61 1493.2 ‐78.216
P2129 ‐204.46 1582.8 ‐201.35 P2897 ‐100.04 1496 ‐97.073
P1385 ‐202.14 1569 ‐199.36 P3250 ‐99.273 1481.5 ‐44.278
P2128 ‐196.59 1573.6 ‐203.6 P3252 ‐89.835 1481.5 ‐60.628
P919 ‐194.65 1556.7 ‐195.2 P3311 ‐80.397 1481.5 ‐76.978
P1453 ‐190.52 1561.7 ‐202.06 P3637 ‐77.641 1457.4 ‐34.043

Theme C Stability of a dam abutment including seismic loading.xlsx Dr. R.M.Gunn (10.04.2009)

P1453 ‐190.52 1561.7 ‐202.06 P3637 ‐77.641 1457.4 ‐34.043
P2224 ‐186.38 1566.8 ‐208.91 P4076 ‐70.397 1457.4 ‐51.745
P1210 ‐186.27 1543 ‐158.46 P4107 ‐63.153 1457.4 ‐69.447
P983 ‐183.94 1546 ‐176.87 P3652 ‐62.351 1433.2 ‐26.945
P1209 ‐183.41 1531.5 ‐130.05 P4494 ‐56.055 1433.2 ‐46.041
P984 ‐181.61 1549 ‐195.29 P4875 ‐49.758 1433.2 ‐65.137
P1217 ‐180.54 1520 ‐101.64 P3653 ‐43.03 1409.1 ‐19.275
P1608 ‐178.89 1554.5 ‐204.76 P4527 ‐38.224 1409.1 ‐38.978
P1609 ‐177.21 1549.2 ‐187.11 P4965 ‐33.419 1409.1 ‐58.681
P2323 ‐176.17 1560 ‐214.23 P4547 ‐9.3001 1385 ‐7.3266
P1615 ‐175.54 1544 ‐169.46 P4549 ‐8.3215 1385 ‐26.02
P1908 ‐170.69 1534.5 ‐145.66 P5249 ‐7.3428 1385 ‐44.713
P2324 ‐170.49 1552.5 ‐197.34 P4546 ‐4.6574 1385 ‐6.7237
P1916 ‐165.84 1525 ‐121.86 P4548 ‐4.1741 1385 ‐24.885
P2334 ‐164.8 1545 ‐180.46 P5240 ‐3.6908 1385 ‐43.045
P1221 ‐162.19 1508 ‐89.657 P5211 0 1385 ‐24.294
P2338 ‐157.97 1537.5 ‐161.27 P5209 0 1385 ‐6.4402
P2635 ‐151.14 1530 ‐142.09 P5239 0 1385 ‐42.148
P1924 ‐150.07 1516.5 ‐109.1
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App. 7 Interface Nodes

Luzzone Dam Model ‐ Interface Node numbering and global coordinates (Tabulated interface coordinates ‐ Left Bank above elevation 1500)
Entity Name X Y Z

668 ‐235.7 1592 ‐187.08
671 ‐229.86 1592 ‐190.09
669 ‐224.01 1592 ‐193.09
675 ‐218.17 1592 ‐196.1
257 ‐212.33 1592 ‐199.11
259 ‐208.39 1587.4 ‐200.23
672 ‐218.55 1586.2 ‐194.66
670 ‐228.7 1585.1 ‐189.09
249 ‐204.46 1582.8 ‐201.35
674 ‐208.77 1581.6 ‐198.79
663 ‐213 08 1580 5 ‐196 23

1570 m.a.s.l.

663 213.08 1580.5 196.23
666 ‐217.39 1579.3 ‐193.66
661 ‐221.7 1578.2 ‐191.1
253 ‐200.52 1578.2 ‐202.47
667 ‐207.61 1574.7 ‐197.79
250 ‐196.59 1573.6 ‐203.6
664 ‐214.7 1571.3 ‐193.11
673 ‐199.37 1571.3 ‐201.48
487 ‐191.48 1570.2 ‐206.25
662 ‐202.14 1569 ‐199.36
479 ‐186.38 1566.8 ‐208.91
665 ‐204.92 1566.7 ‐197.24
738 ‐196.33 1565.4 ‐200.71
660 ‐207.69 1564.4 ‐195.12
737 ‐188.45 1564.3 ‐205.48
483 ‐181.28 1563.4 ‐211.57
736 ‐190.52 1561.7 ‐202.06
742 ‐201.17 1560.5 ‐195.16
480 ‐176.17 1560 ‐214.23

1508 m.a.s.l.

Left Bank Interface ‐
Node Numbering

Theme C Stability of a dam abutment including seismic loading.xlsx Dr. R.M.Gunn (10.04.2009)
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App. 7 Interface Nodes

Luzzone Dam Model ‐ Interface Node numbering and global coordinates (Tabulated interface coordinates ‐ Left Bank above elevation 1500)
Entity Name X Y Z

741 ‐192.58 1559.2 ‐198.63
739 ‐184.7 1558.1 ‐203.41
728 ‐177.53 1557.2 ‐209.49
740 ‐194.65 1556.7 ‐195.2
485 ‐173.33 1556.2 ‐205.79
721 ‐178.89 1554.5 ‐204.76
743 ‐188.13 1552.8 ‐195.24
482 ‐170.49 1552.5 ‐197.34
726 ‐178.05 1551.9 ‐195.93
724 ‐180.25 1551.8 ‐200.02
729 ‐173 85 1550 9 ‐192 23729 173.85 1550.9 192.23
723 ‐177.21 1549.2 ‐187.11
720 ‐181.61 1549 ‐195.29
492 ‐167.65 1548.8 ‐188.9
727 ‐180.58 1547.6 ‐181.99
725 ‐182.77 1547.5 ‐186.08
733 ‐176.38 1546.6 ‐178.28
722 ‐183.94 1546 ‐176.87
490 ‐164.8 1545 ‐180.46
732 ‐185.11 1544.5 ‐167.67
735 ‐170.17 1544.5 ‐174.96
731 ‐175.54 1544 ‐169.46
734 ‐180.91 1543.5 ‐163.96
730 ‐186.27 1543 ‐158.46
505 ‐161.39 1541.2 ‐170.87
756 ‐173.11 1539.2 ‐157.56
500 ‐157.97 1537.5 ‐161.27
757 ‐184.84 1537.2 ‐144.25
752 ‐164.33 1536 ‐153.47

Left Bank Interface ‐
Surface Numbering

1508 m.a.s.l.

Theme C Stability of a dam abutment including seismic loading.xlsx Dr. R.M.Gunn (10.04.2009)



ICOLD ‐ Theme C Stability of a dam abutment including seismic loading ‐ Switzerland Project 9017 / 4001
Page : 14 / 21

App. 7 Interface Nodes

Luzzone Dam Model ‐ Interface Node numbering and global coordinates (Tabulated interface coordinates ‐ Left Bank above elevation 1500)
Entity Name X Y Z

750 ‐170.69 1534.5 ‐145.66
501 ‐154.55 1533.8 ‐151.68
755 ‐177.05 1533 ‐137.86
753 ‐183.41 1531.5 ‐130.05
470 ‐151.14 1530 ‐142.09
751 ‐168.26 1529.8 ‐133.76
746 ‐158.49 1527.5 ‐131.97
472 ‐144.55 1527.5 ‐135.31
754 ‐181.97 1525.8 ‐115.84
744 ‐165.84 1525 ‐121.86
333 ‐137 96 1525 ‐128 54333 137.96 1525 128.54
749 ‐173.19 1522.5 ‐111.75
745 ‐157.96 1520.8 ‐115.48
693 ‐144.02 1520.7 ‐118.82
747 ‐180.54 1520 ‐101.64
334 ‐128.34 1517.7 ‐121.5
687 ‐150.07 1516.5 ‐109.1
748 ‐171.36 1514 ‐95.647
689 ‐156.13 1512.2 ‐99.378
690 ‐140.22 1510.7 ‐101.81
322 ‐118.73 1510.5 ‐114.45
686 ‐162.19 1508 ‐89.657
692 ‐124.55 1507.7 ‐104.49
682 ‐130.37 1504.8 ‐94.518
688 ‐152.1 1503.6 ‐82.121
323 ‐109.38 1503.2 ‐105.76
684 ‐136.19 1502 ‐84.552

Theme C Stability of a dam abutment including seismic loading.xlsx Dr. R.M.Gunn (10.04.2009)
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App. 8 Time‐histories X, Y, Z

Data Time Acceleration Time Acceleration Time Acceleration

(secs) (m/s 2 ) (secs) (m/s 2 ) (secs) (m/s 2 )

MAX 3.07E+01 1.19E+00 3.07E+01 8.19E‐01 3.07E+01 9.14E‐01
MIN 0.00E+00 ‐9.01E‐01 0.00E+00 ‐9.12E‐01 0.00E+00 ‐9.08E‐01
AVE 1.54E+01 1.84E‐04 1.54E+01 3.16E‐05 1.54E+01 4.21E‐06

0.00E+00 3.38E‐03 0.00E+00 1.82E‐03 0.00E+00 ‐3.37E‐04
1.00E‐02 3.37E‐03 1.00E‐02 1.82E‐03 1.00E‐02 ‐3.31E‐04
2.00E‐02 3.38E‐03 2.00E‐02 1.81E‐03 2.00E‐02 ‐3.17E‐04
3.00E‐02 3.38E‐03 3.00E‐02 1.81E‐03 3.00E‐02 ‐3.02E‐04
4.00E‐02 3.43E‐03 4.00E‐02 1.80E‐03 4.00E‐02 ‐2.86E‐04
5.00E‐02 3.46E‐03 5.00E‐02 1.82E‐03 5.00E‐02 ‐2.48E‐04
6.00E‐02 3.46E‐03 6.00E‐02 1.82E‐03 6.00E‐02 ‐1.90E‐04
7.00E‐02 3.45E‐03 7.00E‐02 1.83E‐03 7.00E‐02 ‐2.07E‐04
8.00E‐02 3.37E‐03 8.00E‐02 1.86E‐03 8.00E‐02 ‐1.94E‐04
9.00E‐02 3.20E‐03 9.00E‐02 1.87E‐03 9.00E‐02 ‐1.29E‐04

0.1 3.04E‐03 0.1 1.83E‐03 0.1 5.30E‐05
0.11 2.86E‐03 0.11 1.89E‐03 0.11 2.55E‐04
0.12 2.73E‐03 0.12 1.79E‐03 0.12 1.71E‐04
0.13 2.60E‐03 0.13 1.58E‐03 0.13 2.19E‐04
0.14 2.67E‐03 0.14 1.37E‐03 0.14 2.66E‐04
0.15 2.97E‐03 0.15 1.14E‐03 0.15 4.21E‐04
0.16 3.35E‐03 0.16 1.30E‐03 0.16 6.02E‐04
0.17 3.72E‐03 0.17 1.52E‐03 0.17 8.42E‐04
0.18 3.89E‐03 0.18 1.40E‐03 0.18 1.19E‐03
0.19 4.14E‐03 0.19 1.39E‐03 0.19 1.12E‐03
0.2 4.18E‐03 0.2 1.37E‐03 0.2 1.10E‐03
0.21 3.84E‐03 0.21 1.33E‐03 0.21 1.30E‐03
0.22 3.83E‐03 0.22 1.75E‐03 0.22 7.75E‐04
0.23 4.04E‐03 0.23 1.55E‐03 0.23 1.53E‐04
0.24 5.14E‐03 0.24 1.87E‐03 0.24 5.73E‐04
0.25 5.38E‐03 0.25 2.86E‐03 0.25 1.51E‐03
0.26 5.78E‐03 0.26 3.32E‐03 0.26 1.99E‐03
0.27 5.74E‐03 0.27 3.08E‐03 0.27 8.98E‐04
0.28 5.95E‐03 0.28 2.41E‐03 0.28 ‐6.01E‐04
0.29 6.45E‐03 0.29 1.50E‐03 0.29 ‐2.06E‐03
0.3 6.63E‐03 0.3 6.80E‐04 0.3 ‐3.35E‐03

0.31 6.75E‐03 0.31 6.25E‐04 0.31 ‐4.48E‐03
0.32 5.73E‐03 0.32 1.46E‐03 0.32 ‐5.09E‐03
0.33 5.27E‐03 0.33 7.79E‐04 0.33 ‐4.22E‐03
0.34 3.08E‐03 0.34 6.04E‐04 0.34 ‐1.54E‐03
0.35 1.37E‐03 0.35 ‐7.20E‐05 0.35 ‐4.97E‐04
0.36 1.29E‐03 0.36 1.01E‐03 0.36 ‐3.66E‐04
0.37 1.46E‐03 0.37 3.84E‐03 0.37 3.67E‐04
0.38 3.04E‐03 0.38 6.14E‐03 0.38 ‐1.38E‐03
0.39 2.80E‐03 0.39 7.24E‐03 0.39 ‐1.69E‐03
0.4 1.40E‐05 0.4 7.72E‐03 0.4 6.51E‐04
0.41 ‐3.50E‐03 0.41 7.24E‐03 0.41 1.46E‐03
0.42 ‐6.42E‐03 0.42 4.74E‐03 0.42 1.40E‐03
0.43 ‐7.68E‐03 0.43 2.96E‐03 0.43 6.27E‐04
0.44 ‐6.94E‐03 0.44 4.45E‐03 0.44 ‐5.18E‐04
0.45 ‐4.25E‐03 0.45 4.56E‐03 0.45 ‐1.95E‐03
0.46 ‐2.42E‐03 0.46 4.43E‐03 0.46 ‐2.64E‐04
0.47 1.53E‐03 0.47 3.30E‐03 0.47 ‐1.15E‐04
0.48 6.13E‐03 0.48 ‐4.54E‐04 0.48 1.75E‐03
0.49 8.81E‐03 0.49 ‐3.30E‐03 0.49 4.37E‐03
0.5 1.34E‐02 0.5 ‐3.21E‐03 0.5 3.09E‐03

X ‐ direction L‐R Banks  + Y ‐ direction Vertical  + Z ‐ direction D/S ‐ U/S  +

Theme C Stability of a dam abutment including seismic loading.xlsx Dr. R.M.Gunn (10.04.2009)
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App. 9 Time‐history X Dir'n

0.50

1.00

1.50

2

Acceleration‐time history ‐ X Direction (Cross valley)
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App. 10 Time‐history Y Dir'n

0.50

1.00

1.50

2

Acceleration‐time history ‐ Y Direction (Vertical)
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App. 11 Time‐history Z Dir'n

0.50

1.00

1.50

Acceleration‐time history ‐ Z Direction (Upstream‐downstream)
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App. 12 Wedge Arrangement

1
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App. 13 Participant Results

Results Case

F x F y F z F R F α F β J h J 1 J 2 D S J h J 1 J 2

MN MN MN MN ° ° MN MN MN MN MN
Static Load Fsw(0) Yes No Yes

Static Load Fhyd(0)

Static Load Ftot(0)

Initial Static Load Fs(0)

First dynamic step Fd(0)

Dynamic steps F

Resultant Forces
(Dam thrust)

Interface Forces 
(Dam thrust)

Loss of Contact Plane 
Results

Contact Plane Forces Stability Forces

Dynamic steps Fd(n + 1)

……..

……..

Last dynamic step Fd(n)

Notes:
Subscripts ‐ s = static 1  = plane 1

d = dynamic 2  = plane 2
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EFFECTS OF EARTHQUAKES ON DAMS AND EMBANKMENTS
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INTRODUCTIOK

General de!,rription of earthquake motions
In ar, earthquake, the earth moves in a nearly random fashion in all directions, both

horizontally and vertically. Measurements have been made of earthquake motions in a
r..::::-'~-:"i of instances. In general, those measurements which are of greatest interest are the
records of' strong motion' earthquake accelerations, measured by the U.S. Coast and Geodetic
Survey for a number of earthquakes in California in the past three decades. These accelera­
tions, as a function of time, are available for motion in two horizontal directions as well as
in the vertical direction, at a number of locations for several earthquakes. From the time­
record of the acceleration, the velocities and displacements can be computed by integration.

One of the most intense strong motion records available is that for the El Centro, Cali­
fornia earthquake of 18 May, 1940. The record for the north-south component of acceleration
of this earthquake is shown in Fig. 1, which also shows the values computed for velocity and
displacement in the same direction. From the figure it can be observed that the maximum
ground acceleration in the direction of this measurement is about 0·32 g, the maximum ground
velocity 13·7 in/sec, and the maximum ground displacement 8·3 in.

The general nature of earthquake motions is indicated by this figure. It can be noted
that the highest intensity peaks of acceleration have a relatively short period or a relatively
high frequency; the most important peaks in the velocity, however, have a longer period
which corresponds to a lower frequency; and the important peaks in the ground displacement
have a much longer period still. For the ground conditions at El Centro the length of single
loops of the highest intensities, in the various records, have durations of the order of the follow­
ing: for acceleration, about 0·1 to 0·5 sec; for velocity, about 0·3 to 2 sec; and for displacement
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110 MILESTONES IN SOIL MECHANICS

about 1 to 4 sec. In other types of soil, the relative durations may differ, with softer soils in
general showing lower magnitudes of acceleration, but longer durations and much larger
displacements, than in Fig. l.

It must be remembered that the EI Centro earthquake is not the largest earthquake which
has been experienced, even in California. It happened only to yield the most intense record
at a point where a strong motion accelerograph was located.
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Fig.1. El Centro, California, earthquake of 18 May, 1940, N-S component

Significant factors of earthquake motion
In considering the effect of an earthquake on a structure such as an earth or rock-fill dam,

it is necessary to consider all of the aspects of the motion. In other words, the peak accelera­
tion may not be significant in determining the response of the dam. The effects of the
velocities and of the ground displacement, and of the differential displacement of the ground
leading to fissures in the ground surface, may be of equal or of even greater importance. It
will be shown later that the most important measure of the intensity of an earthquake is the
maximum ground velocity reached at any time during the earthquake.

Records of the same general nature as those in Fig. 1 have been obtained for other earth­
quakes. Some major differences exist in the records, which show distinctive situations: in
some cases an earthquake may correspond only to one short series of major pulses, with
essentially only one major loop of displacement; and in other cases it may show an almost
periodic displacement response for a large portion of time. The El Centro record is typical
of a nearly periodic response of moderately low intensity combined with one very large dis­
placement peak.

The durations of large motion in earthquakes vary from less than 10 seconds to as long as
several minutes. The total duration and the total number of j spikes' or peaks of velocity,
and the reversals of velocity, are of importance in determining the response of a structure
such as an earth or rock-fill dam, or embankment.
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In the studies made for this Paper, earthquakes have been considered patterned after
those for which records are available in California, but which differ in some respects in terms
of the significant frequencies of the various kinds of motion, and in the total duration of
motion or number of spikes.

One of the most important special conditions existing at some sites is a relatively soft
sedimental deposit of fairly great depth and wide extent. When such a soil deposit is set in to
motion at its contact with the bed rock, there is a tendency for the resultant motions of the
soil to reflect the natural frequency of the bowl of soil. This has the effect of increasing the
magnitude of surface displacements and velocities, but it also causes the resultant motion to
be more periodic in character, with many loops of successive displacement or velocity nearly
in resonance, that is, having nearly the same period and with successive positive and
negative peaks. A structure built on such material and hence subjected to such a motion
will generally have a larger response than it would have if it were subjected to the motions
of the bed rock.

Intensities of maximum motion for major earthquakes
Although earthquakes in many parts of the world may be less intense than the maximum

recorded earthquake in California, in regions in which major seismic activity must be expected
one should consider the probability of even larger motions. In any location, it is desirable to
design for the maximum probable earthquake, that is, an earthquake that has a reasonable
probability of occurring within the lifetime of the structure, with a sufficiently large factor of
safety to preclude the necessity for major repairs. One should also consider an extreme earth­
quake, of about the maximum intensity that might be expected at the site, and for which
some damage might be permissible, but collapse or failure should be prevented. Estimates
of the maximum probable earthquake that might occur once in a hundred years in California,
and an extreme earthquake with only a relatively small chance of occurrence, are given in
Table 1, for comparison with the maximum recorded earthquake in California. It is not
considered likely that the extreme earthquake indicated in Table 1 would be exceeded any­
where in the world. The parameters indicated in Table 1 describing the intensity of possible
earthquakes, are intended to apply to the general motions of the soil or rock away from the
regions where the major fault motions occur. Although even at such fault motions, the
accelerations and velocities are not likely to exceed the values tabulated, the displacements
might be considerably greater, and the relative displacement at a fault may be of such a
magnitude that it would cause damage or serious difficulty in a structure or a dam at the
fault.

Table 1

Probable intensities of maxUnUDl motion for major earthquakes

Condition Maximum Maximum Maximum Duration
acceleration velocity: displacement: of

g in/sec in. major motion:
sec.

1. Maximum recorded EQ. in
California - - 0·32 14 12 30

2. Maximum probable EQ. in
California - - 0·50 24 to 30 24 90 to 120

3. Extreme values considered 0·50 to 0·60 30 to 36 36 to 48 120 to 2-10

Note: Lower values of motions apply to rock, in general.
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OBSERVED EFFECTS OF EARTHQUAKES

Ambraseys (1962) points out that no major earth dam has been damaged by an earthquake
during the last 25 years. However, he also points out that this argument can not be used as
a proof for the adequacy of modern design methods, since no major dam built after the late
thirties has been subjected to a severe earthquake. There have been a number of dams that
have been damaged, or even destroyed, in earthquakes (Ambraseys, 1960, 1962). Moreover,
it is generally true that in all compacted dam-construction materials, and in many natural
soil strata, the dynamic shearing resistance is about the same as the static shearing resistance,
or slightly greater, and the usual factor of safety is sufficiently large to prevent catastrophic
motions. However, at some localities, natural soil strata are encountered which can lose part
or almost all of their shearing resistance under shock conditions, either because of increased
hydrostatic pressure or owing to loss in shearing strength from even slight remoulding.
Under such conditions, major failures can occur, and have occurred, in embankments or
under the foundations of dams which otherwise would not have suffered difficulties.

In the recent Anchorage earthquake, large
motions and catastrophic failures occurred in
natural embankments which slid major dis­
tances on sensitive clay strata or on loose,
low relative density sand layers. A typical
example of the type of failure which occurred
is shown in Fig. 2, taken from Shannon and
Wilson (1964). The entire block of material
of the order of 1000 ft in length and 60 to

100 ft in height, moved bodily tens of feet in an earthquake the maximum acceleration of
which has been variously estimated as about 0·15 to 0·18 g.

Motions along a sliding surface may occur in a dam,
under certain conditions, and a succession of slides of
limited displacement on the upstream and downstream
faces of a dam are indicated schematically in Fig. 3,
taken from Ambraseys (1958). The successive motions
coming from the several shocks in different directions
produce slides along different surfaces, with the net
results shown at the bottom of the figure. The major
settlement at the crest and the pattern of the deforma­
tions are similar to those which have been observed in
several older dams which may not have been designed
to have adequate earthquake resistance.

Tests of models of earth or rock-fill dams have
been made by Davis and his associates at Berkeley
(Davis et al., 1960; Clough and Pirtz, 1958), by Seed
and his associates, also at Berkeley (Seed and Clough,
1963; Seed and Goodman, 1964), and by Bustamante
(1964) at the University of Mexico. In granular
material the patterns of slip are similar to those shown
in Fig. 4. The outline marked 1 shows the original
slope, that marked 2 shows the deformation after a re-
latively small shock, and the outline marked 3 shows the deformation after major motions
have occurred. Similar motions have been observed when the base of the model was tipped,
to simulate a constant acceleration field.
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Fig. 4. Patterns of slip in
granular elJ1bankInent
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General concepts of beha....!io'Ur
The types of motion of earth or rock-fill darns, or of an embankment, subjected to an earth­

quake can be considered to be of the following forms:

(a) motion of a block or wedge or slice of the upstream or the downstream slope,
generally out and downhill, as indicated in Fig. 5, arcs' a' or 'b' ;

(b) motion of the dam as a whole block, as in Fig. 5, line' c' ;
(c) relative motions in either

the darn or the foun­
dation,of such a nature
as to cause fissures to
open, generally ver­
tical, caused either by
relative shearing mo­
tions or tensile strains
in the earth crust, cor­
responding to differ­
ential movements
arising from the wave
characteristics of the
surface motion of the
earth, or from stresses
arising when parts of
the mass of the darn
and foundation are ac-
celerated in one direc­
tion and other parts in
other directions. This
type of effect is illus­
trated in Fig. S, by the
fissures marked ' d'
and 'e'.

Fig. 5. Possible IX1otions and deforInations of an earth
daDl in an earthquake

Fig. 6. COInparison of two types of
gross-Inotions

(a) Block Movement ( bl Genera I Oefarmalian
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The characters of the motions in different types of materials are somewhat different. In
general, for non-cohesive materials, and for cohesive materials where a well-defined plane of
weakness can develop, the motion occurs along arcs or planes, and is similar to that assumed
in the usual static analysis of stability of an embankment, as indicated in Fig. 6(a). However,
in highly cohesive materials, the motion is more nearly general and elastic or nearly elastic in
character, and a well defined sliding surface may not be formed. This is illustrated in Fig. 6(b).
Where movements such as those in Fig. 6(a) occur, a relatively simple analysis can be used to
compute the magnitude of dynamic motions produced by earthquake or other shocks. How­
ever, where motions such as those in Fig. 6(b) occur, the situation is much more complex, and
the analysis cannot be made so readily or so accurately. For this case, the methods described
herein can only be used as a crude approximation. In general, we shall devote our further
attention in detail to situations of the type illustrated in Fig. 6(a).

Resistance to sliding motion
The resistance to earthquake shock motion of a block of soil or rock that slides on a surface

is a function of the shearing resistance of the material under the conditions applicable in the
earthquake. Although the magnitude of the resistance depends on the amount of displace­
ment, the displacement necessary to mobilize the average 'yielding' resistance, normally
considered in a stability analysis, is not large. For the purpose of simplifying the calculations
the resistance which we shall use is measured by (and in fact equal and opposite to) that steady
force acting at the centre of gravity of the sliding mass, in the direction in which the force
can have its lowest value, which will just overcome the stabilizing forces and will barely keep
the mass moving, after it has started to move, or after several pulsations (or reversals) of
motion have occurred.

I t is convenient to state this resistance in terms of a coefficient .V multiplied by the weight
of the sliding mass. Then the quantity Ng, where g is the acceleration of gravity, corresponds
to that steady acceleration, acting in the proper direction, which would just overcome the
resistance to sliding of the element, in the direction indicated, as defined above.

The resistance to sliding downhill, as on lines' a' or 'b' of Fig. S, is much lower than the
resistance to sliding uphill on the same lines. The uphill resistance, without serious error
in the calculations, may be taken as infinitely large. On the other hand, the type of motion
characterized in line' c' of Fig. 5 may have nearly the same resistance in either direction of
relative motion of the mass compared with its foundation. This resistance may change as a
function of displacement, and with reversal of displacement, but it is not generally greatly
affected by the direction of motion other than in these ways.

We are not limited in the argument which follows by the use of a constant or steady-state
value of N. We can consider the quantity n to be a coefficient, multiplied by the weight of
the sliding material, which is used as a measure of the resistance to sliding, and which can be a
function of the amount of deformation, or of time, or of any other parameters which it is
desirable to consider. It is convenient to use the single parameter n as a measure of resistance,
and to compare it with a single parameter a, as a measure of the acceleration driving the
element. In other words, the quantity nW is a measure of the resistance as a generalized
force, and the quantity aW, where the transient ground acceleration is ag, is a measure of the
disturbing force as a generalized force, which varies with time. For further simplicity, we
may use n=N, the steady-state resistance; and a=A, as a measure of the maximum ground
acceleration, in developing approximate relationships.

Dynamic properties of soil and rock
In the determination of the value of sliding resistance, the dynamic properties of the

material must be considered. This involves also the dynamic effects on the pore-water pres-
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sure, and the effects of the motion or shearing strain itself on the volume change and the pore
pressure change. In general, it is the undrained shearing resistance that is of importance.
For highly permeable materials, the drained shearing resistance may be appropriate. Because
of the fact that our primary concern is with the resistance of the soil or rock and its strength
under dynamic conditions, although the dynamic resistance is used in a sort of static analysis,
we shall refer to the resistance as the' pseudostatic' resistance. In other words, the calcula­
tion of stability which leads to the determination of the steady-state sliding resistance N is
made for properties of the material that are related to the dynamic situation.

Stress

Stress

Strain

Strain

Fig. 7. Stress-strain relations for
pulsating loads

Fig. 8. Stress-strain relations for
reversed loading

Effect of pulsation or reversal of stress
Because of the vibratory character of earthquake shock motions, the direction of stresses

and of deformations may reverse, or at least pulsate with relatively rapid fluctuations. In
Fig. 7 is shown the relation between stress and strain for a load applied and released success­
ively. So long as the strains are relatively small, for many soils the bounding curve to the
pulsating stress-strain relation is the same as for a single application of stress. However,
for some soils after a certain strain has been reached the stress may drop from the original
virgin curve, as indicated by the dashed line on the right-hand side of the figure. The situation
shown, with a diminishing resistance beyond the maximum, is not untypical of many sensitive
soils. \Vhere the stress is reversed, or where motions can take place in both directions, the
reduction may be even greater, and the change in shape of the stress-strain relationship is
very marked, possibly even more than is indicated in Fig. 8. Under these conditions a change
in the resistance function N, with number of reversals or with time, is necessary if one is to
account properly for the behaviour of the embankment.

DYNA:-'IIC RESPONSE THEORY

The dynamic response of a deformable body can be computed by the direct application of
Newton's laws of motion. However, in many cases this application is extremely tedious or
involved. Some basic concepts and principles are available to permit a relatively simple
summary of the responses to earthquake motions to be developed. These are described in
some detail by Blume et al. (1961).

The maximum responses of a simple system such as that shown in Fig. 9, consisting of a
single mass connected by an elastic spring to a movable base, are best described by the so­
called 'response spectrum', which is a plot against frequency of one of several measures of the
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stress or deformation in the system. One of the most convenient ways of indicating the
response for a variety of conditions is the tripartite logarithmic plot indicated in Fig. 10.
The frequency f of the mass-spring system is the abscissa. For a particular motion of the
base, the maximum strain in the spring or relative displacement of the mass with reference to
the base Dr, is plotted along the axis sloping up to the left. A quantity from which the
maximum energy absorbed in this system may be readily computed, the pseudo-velocity Vr
is plotted as the ordinate, vertically, and the maximum acceleration of the mass Ar is plotted
along the axis sloping up to the right. For damping other than zero, the quantity that is
plotted is not exactly equal to the acceleration but is the' pseudo-acceleration'. The relations
among the pseudo-velocity, the pseudo-acceleration, and the relative displacement, are
indicated in Fig. 10. The spectrum shown in Fig. 10 is plotted against frequency rather than
against period, as are those in Blume et al. (1961).

Mal. Responses
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Fig. 9. SysteIn considered Fig. 10. Tripartite logaritlunic response
spectrUIn plot

For a base motion corresponding to the EI Centro earthquake described in Fig. 1, the
response spectra for several different values of the damping factor {3, the proportion of critical
damping for the system, are shown in Fig. 11.

The general characteristics of the response spectrum, as summarized from a great many
studies of different input motions, are indicated in Fig. 10, where the quantities representing
the maximum ground displacement de the maximum ground velocity vo, and the maximum
ground acceleration ao, are indicated schematically in the lower part of the figure by straight
lines. Then the response spectrum has the shape shown roughly by the upper series of three
straight lines parallel to the lines just described, fairing in at the high and low frequency ends
to the ground motion lines. The bounds to the response spectrum for displacement l5,
pseudo-velocity, V, and pseudo-acceleration, A, are for moderate amounts of damping, of the
order of S to 10%, given by the relations

15 = do, if = I'Svo, A = 2ao (1)

M ulti-degree-of-freedom system
The simplicity inherent in the description of the response of a single-degree-of-freedom

system is not possible in describing the multi-degree-of-freedom system. A typical multi-
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Fig. 11. Deformation spectra for elastic systems subjected to the El Centro quake

degree-of-freedom system having the characteristics of a so-called /shear beam' is shown in
Fig. 12. A shear beam is a system made up of masses which can move horizontally with
respect to one another. This is not untypical of the type of motion that occurs in a dam or
embankment. Sketches of the modes of vibration of a typical shear beam are also shown in
Fig. 12. Each of these modes has a frequency, with the fundamental mode having the lowest
frequency, the second mode the next higher frequency, etc.

(0)

Multi-Degree -af­
Freedom System

(b)

Fundamental
Mode

(Cl

Second
Mode

Cd)
Third
Mode Distortion or Strain

Fig. 12. Modes of vibration of shear beam Fig. 13. Co:m.parison of strains for
equal displace:m.ent, energy, or force

The maximum strains or distortions in the springs, or the maximum stresses at any
elevation, in a multi-degree-of-freedom system, can be stated in terms of the corresponding
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quantities for a set of single-degree-of-freedom systems corresponding to each of the modes of
vibration. For a particular system, a plot similar to that in Fig. 10 can be drawn, as a function
of the fundamental frequency.

Inelastic relations between stress and strain
The spectra indicated previously in Figs 10 and 11, for an elastic system, correspond to

elastic behaviour, which is represented by the upper inclined straight line (a) in Fig. 13.
There are also shown in Fig. 13 several inelastic relations between stress and strain, or between
force and deformation. For an inelastic relation between stress and strain, corresponding
to one of the curved lines such as (b) or (c) in Fig. 13, the spectrum as described previously
cannot be used directly. Curve (b) corresponds to a strain hardening situation, and curve (c)
to an unstable one. An elasto-plastic resistance is indicated by the dashed line (d), in Fig. 13.

Spectrum bounds for the distortion or strain can be derived from Fig. to, as indicated by
the schematic plot in Fig. 14. Here three different regimes are considered. At the left, for
a frequency f, the inelastic spectrum bound Dl is the same as D. At the right, the inelastic
spectrum gives the displacement bound Al corresponding to the same force as the elastic
spectrum bound A. Where we have an elasto-plastic resistance, the bound Al may be
infinitely far above A.

0, 2 determined by distortion or stroin

V':2 determined by energy

A,,2 determined by force or stress

Fig. 14. Response spectruIn
displacexnent lixnits

In the intermediate range of frequencies, the spectrum bound VI corresponds to the same
total energy or area under the stress-strain curve as V. These three conditions are illustrated
in Fig. 13 by the lines marked FF at a constant force level, which intersects three of the
curves but not the elasto-plastic curve; the line marked SO which intersects all of the curves
at the same displacement, and the line marked t energy' which intersects all of the curves at
such a point that the area up to that displacement is the same. In Fig. 14 two different
levels of inelastic displacement are considered, corresponding to f\ and V2, or Al and .12 '

Results of a number of studies, still under way, indicate that in general the displacement
for an inelastic system is bounded by the least of the following three quantities:

(1) a displacement corresponding to the same force as for the elastic spectrum bound A;
(2) a displacement corresponding to the same energy as for the elastic spectrum

bound V;
(3) a displacement corresponding to the elastic spectrum bound D. In other words,

one can compute the displacement of the inelastic system by taking the smallest of the
displacements that correspond to force, energy or maximum ground displacement, as
indicated in Fig. 14.
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(b) Plane Sliding Surface

(0) Circular Sliding Surface

b

w

(c) Block Sliding

Fig. 15. Forces acting on a sliding eleInent

For very large amounts of plastic deformation, the acceleration bound for the inelastic
spectrum lies so high that the energy bound is the only one of importance other than the
displacement bound. Consequently, for large amounts of plastic deformation, it is appropriate
to consider the preservation of energy, and to neglect the preservation of force, provided the
stipulation is made that the displacement does not exceed the maximum ground displacement.
Actually the displacement bound that should be considered is the maximum elastic spectrum
displacement which may be slightly greater than the maximum ground displacement.

The methods des-
cribed heuristically in the
foregoing can be used for
the analysis of systems in
which the resistance
varies with displacement.
However, when the resis­
tance is essentially rigid­
plastic, corresponding to
no displacement until the
yield point is reached,
after which the displace­
ment may have any value,
the analysis is particu­
larly simple. In the re­
mainder of the analytical
discussion herein, this is
the type of resistance that
is considered. We shall
simplify the cases of
motion to that of a rigid
block of weight W, sup­
ported on a base which
moves as a function of
time. We are concerned
with the motion u of the
block relative to the base.
This model will be used
for all of the cases of slid­
ing that we have defined
for a dam or embank­
ment.

The three important
cases of sliding for a dam,
on a circular sliding surface, on a plane sliding surface, or block sliding horizontally, are shown
in Fig. 15. Of course, one might consider even more complex sliding surfaces if one can
make the appropriate analysis for the resistance. For a general non-circular sliding surface
the distortions within the sliding mass must be taken into account in arriving at the value of
N for the entire mass.

Measures of dynamic resistance to sliding
In order that a dam or embankment have any dynamic resistance to sliding in an earth­

quake, it must have a margin of safety against static failure. Values of the static factor of
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safety against sliding are determined by conventional analysis with no consideration of
horizontal or inclined accelerations. Values of the dynamic factor of safety against sliding
may be determined in a similar manner, but one must use in such an analysis the appropriate
properties of the materials, which may involve considerably reduced shearing strengths owing
to the dynamic effects on the pore pressures.

The method of analysis described here is a simplified approach permitting a rapid estimate
to be made of the order of magnitude of the displacement or deformation in an earthquake.

Circular cylindrical sliding surface
Consider the sliding element of the dam shown in Fig. 15(a), where a circular arc of radius R

defines the sliding surface. The weight of the element W has a lever arm b about the centre
of rotation O. Consider a force NW which corresponds to a constant acceleration N times
that of gravity, acting along the line shown making an angle a with the horizontal, which
may be different from the angle eof the surface slope of the element. For constant values of
acceleration less than Ng, no sliding occurs, but for greater values, sliding of the element will
take place. For any arbitrary acceleration N'g, we may define a dynamic factor of safety
FS', which becomes unity if ]'V' = N.

Now, when N' is taken as zero, the dynamic factor of safety, FS' for this definition becomes
equal to FS, defined as the ratio of moment of the resisting forces on the sliding surface to
the disturbing moment Wb. This dynamic factor of safety is defined differently from the
usual static factor of safety. Drawdown seepage forces, etc. should be taken into account,
also, in defining the factor of safety.

The shearing stresses -r for static conditions are to some extent indeterminate, but their total
or their average value can be determined from the relation between the disturbing moment
Wb and the restoring moment R L Tds, when N'=O:

Wb = R L Tds. (2)

The moment of the resisting forces on the arc is R L sqds. Hence the dynamic factor of
safety is:

FS = R L sqds/R L-rds = L sqds/L Tds.

An approximate value of N which will just cause sliding is obtained by equating disturbing
and resisting moments as follows:

Wb+NWh = R L sqds. (3)

Therefore, by subtracting equation (2) from equation (3), one obtains:

NWh = R L sqds-R L-rds.

On dividing this equation by equation (2), and multiplying through by bjh, one obtains
the result:

N = ~ ("LSqdS - 1)
It J.,-rds

which can be written:

N = ~ (~-l) (4)

if Sq and T are considered as average values. This expression is valid for any case such as
steady seepage or after rapid drawdown, but the value of T and 8q have to be determined
separately for each case. Equation (4) can also be written as:

- b
N = (FS - 1) h (5)
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Since the maximum value of h for a given sliding surface occurs when h equals d, the
distance from 0 to the e.g. of the element, the minimum value of N occurs for a slope per­
pendicular to d, and one finds for this:

N = (FS-I) bjd = (FS-I) sinP

where p is the angle between d and the vertical, and FS=sqj"f.

For N horizontal, the result would be:

N = (FS-I) tanp.

(6)

(7)

In the calculations, N is taken as inclined rather than horizontal, in order to be conservative,
and also because the earth moves vertically as well as horizontally in an earthquake.

For soils which have nearly the same static and dynamic shear resistance, equation (5)
may be approximated as:

N = (FS-I) sinp (8)

in which FS is the conventional static safety factor. This equation will hold good for free­
draining materials and can also be used for dilatant soils in which only small or negative pore
pressures will be developed.

'When N' is different from zero, the same type of derivation leads to the relation:

R L sqds = FS' (Wb+N'Wh)

By equating equation (9) with (3), one obtains

N = N'(FS') + (FS' -l)bjh

(9)

(10)

which reduces to equation (5) when N' =0 and FS' =FS. Note, however, that equation (10)
is valid even if FS' is less than unity.

Because we are concerned with the minimum value of N for all of the possible sliding sur­
faces, and because the minimum value does not necessarily occur for the sliding surface for
which FS has a minimum value, use of equation (10), involving a trial value of N', will lead
to more accurate results than use of equations (4) and (5) in which no assumed value of acceler­
ating force is included in the basic computation. The most accurate results are obtained
when FS' is nearly equal to unity. The poorest results are obtained from the static factor of
safety computed for the case of zero lateral force.

For completeness, the relations corresponding to (6) and (7) are given, for the case in which
N' is different from zero:
for N perpendicular to d,

for N horizontal,
N = N'(FS')+(FS'-I) sinp

N = N'(FS') + (FS' -1) tan p.

(11)

(12)

Block sliding
For block sliding of the entire dam along a surface such as z-z in Fig. 15(c), between fissures

or embankment surfaces, the relationships to be used involve summation of forces rather than
summation of moments. For the static condition of equilibrium it can be assumed without
significant error that the average static shear stress along the horizontal surface is zero and the
only disturbing force is thus the effect of the horizontal constant acceleration. The maximum
shear strength which can be mobilized for earthquake conditions is the undrained shear
strength Sq.
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Since the sum of the disturbing forces NW per unit of width of dam must equal the sum
of the shearing resistances per unit of width,

NW = L sqds (13)
where ds is the length of the element on which the resistances act. Hence N is the ratio of
the total horizontal resistance to the weight of the dam.

The effective overburden pressure P' is equal to the weight of the material above minus
the pore pressure; hence

P' = yh-up (14)
where y is the bulk density of the soil, h the height of the element, and up the pore pressure.

However,

W = Lyhds. (15)
In general the undrained shear strength is a function of the effective overburden pressure.

For the special case of a normally consolidated soil the ratio of Sq to P' is a constant.
From equations (13) and (14), for a normally consolidated soil, one can determine N as

follows:

N = l~' L sqds = ~ L ;~ P' ds

= ~.(~,) L P' ds

Sq L yh ds - L up ds
= P' Lyhds

= Sq (I_ L UpdS)
P' "2. yh ds

This equation can be written as

(16)

.v = ;~ (l-ru ) (17)

L upds
where ru = "2. yh ds· (18)

The quantity r u is in general not a constant and has to be determined in each case as an
average value. It should be taken at a conservative value to provide for pore pressure increase
in an earthquake.

Plane sliding surface
For cohesionless and free-draining materials, with a plane sliding surface, as in Fig. 15(b),

it is found that the most dangerous sliding plane is the upper slope, making an angle 8 with
the horizontal. Under these conditions, for a material with an angle of internal friction ep
when sliding is taking place, the value of factor of safety against sliding is

FS = tan ep (19)
tan 8

It can be determined under these conditions that the minimum value of N is

.v = (FS-l) sin 8. (20)

Sliding of a rigid-plastic mass
A simple derivation for a rigid-plastic resistance is developed to give a quick estimate of

the magnitude of the motions to be expected in a sliding wedge of rock or earth in a dam,
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when it is subjected to the influence of dynamic forces from an earthquake. The calculation
is based on the assumptions that the whole moving mass moves as a single rigid body with
resistance mobilized along the sliding surface.

Consider the rigid body having a weight W, and a mass M, shown in Fig. 16, having a
motion x. The motion of the ground on which the mass rests is designated by y(t), where y
is a function of time t. The relative motion of the mass, compared with the ground, is
designated by u, where

U = x-yo (21)

The resistance to motion is accounted for by a shearing resistance, which can be expressed
as being proportional to the weight W, of magnitude NW. This corresponds to an acceleration
of the ground of magnitude Ng that would cause the mass to move relative to the ground.
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Fig. 16. Rigid block on a moving support Fig. 17. Rectangular block acceleration pulse

In Fig. 17, the accelerating forces acting on the mass M are shown. The acceleration
considered is a single pulse of magnitude Ag, lasting for a time interval to' It would be possible
to consider a sinusoidal pulse, but this complicates the expressions unnecessarily. The
resisting acceleration, Ng, is shown by the dashed line in Fig. 17. The accelerating force
lasts only for the short time interval indicated, but the decelerating force lasts until the direc­
tion of motion changes.

In Fig. 18, the velocities are shown as a function of time for both the accelerating force
and the resisting force. The maximum velocity for the accelerating force has a magnitude V
given by the expression

V = Agto'

After the time to is reached, the velocity due to the accelerating force remains constant. The
velocity due to the resisting acceleration has the magnitude Ngt. At a time tm , the two
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u
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>

Fig. 18. Velocity response to rectangular
block acceleration

Time, ,
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velocities are equal and the net velocity becomes zero, or the body comes to rest relative to the
ground. The formulation for trn is obtained by equating the velocity V to the quantity Ngt,
giving as a result the expression

V
t = - (22)rn Ng

The maximum displacement of the mass relative to the ground Urn is obtained by computing
the shaded triangular area in Fig. 18. The calculation is made as follows:

Urn = ! Vtrn -! Vto

1 V2 1 V2
or 14, = -----

rn 2Ng 2Ag

whence Urn = ~~ (1 - ~) (23)

The acceleration pulse shown in Fig. 17 corresponds to an infinite ground displacement.
The actual situation corresponds to a number of pulses in random order, some positive and
some negative. If we consider a second pulse, of a negative magnitude, to bring the velocity
to zero even without the resisting force, it can be shown that the net displacement with the
resistance generally cannot exceed that which would occur without resistance.

The result given in equation (23) generally overestimates the relative displacement for an
earthquake because it does not take into account the pulses in opposite directions. However,
it should give a reasonable order of magnitude for the relative displacement. It does indicate
that the displacement is proportional to the square of the maximum ground velocity.

M :YL
q

Fig. 19. Mass sliding under constant forae
.'Z

The result derived above is applicable also for a group of pulses when the resistance in
either direction of possible motion is the same. For a situation in which the body has a
resistance to motion greater in one direction than in another, one must take into account the
cumulative effect of the displacements. A simple example where this must be considered
\-'!ould be found if Fig. 16 were rotated clockwise, as in Fig. 19, so that the body has a tendency
to slide downhill. In this situation, ground motions in the direction of the downward slope
tend to move the mass downhill, but ground motions in the upward direction along the slope
leave the mass without relative additional motion except where these are extremely large in
magnitude. One may consider that this case is applicable to the dam.

E1lergy concepts
Another interpretation of equation (23) may be useful. Consider the situation where the

sliding mass of material acquires somehow a velocity V relative to the ground or foundation.
This velocity may be imparted by motion of the foundation and that part of the dam which
presses against the sliding wedge, but in any event, it is the velocity of the mass, relative to the
ground or foundation on which it slides, that is needed. This is not necessarily the same as
the maximum ground velocity.

The kinetic energy of the moving mass, with this velocity, then is given by the relation
WV 2 /2g. The resistance to sliding is given by the quantity NW and the energy absorbed in
the sliding resistance is NW times the displacement. It follows, therefore, that the displace­
ment required to absorb the kinetic energy is given by the first term on the right of equation
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(23), namely, V 2/2gN. The solidus term takes into account to some extent the manner by
which the mass acquires its velocity.

We may extend the energy concept to other types of force displacement relationships
such as shown in Fig. 13 or even more complex relations. It is of particular interest to
compute the relative displacement for an elasto-plastic resistance as compared with a purely
elastic resistance. To do so one can compare the two types of resistance shown in Fig. 20 and
note that areas 1 plus 2 plus 3, for the elastic resistance energy, must be equal to areas 1 plus 2
plus 4 for the elasto-plastic resistance energy.

-r.+-----f

Fig. 20. Conventionalized elastic and
elasto-plastic stress-strain cliagraxns

8

From this relation, taking note of the fact that

Te/Ty = OeJOy
one derives the result

(24)

(25)

(26)

Oy 1
Oe = yI(2f£-I)

om f£s: = yI(2f£-I)"
In these equations, as indicated in Fig. 20, f£ is the ratio of the maximum total displace­

ment to the elastic component of displacement. For purely elastic conditions, f£ = 1.
For a rigid-plastic resistance, the energy absorbed at a maximum displacement 0mp is

OmpTy , whereas for the elasto-plastic resistance, the energy absorbed at a maximum displace­
ment Om is

omTy(I-I/2f£). (27)

Then, for the same energy the relative value of maximum displacement is:

om/amp = 1/(1-1/2f£). . (28)

The maximum value of this ratio is 2·0. For even moderate values of f£, however, the ratio
is close to unity.

Number of effective shocks in an earthquake
Since the sliding of either the upstream or downstream slopes in an earthquake can only

occur downhill, if sliding occurs at all there will be a lowering of the crest of the dam caused
by a cumulative slip on both slopes, always downhill. The net motions of either slope can
be determined only after assumptions are made of: (a) the input J;!lotions of the ground;
(b) the effective number of spikes of accelerations similar to one of the single spikes considered
in Fig. 17 and in the derivation of equation (23) ; and (c) the resistance of the sliding elements.

The effective number of pulses in an actual earthquake can be detennined by an analysis
of the response of simple systems to the earthquake motion. This has been done for four of
the West Coast United States earthquakes for which strong motion records are available.
These four are described in Table 2.

For convenience in interpreting the results the four earthquakes were nonnalized to a
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maximum acceleration of 0·5 g and a maximum ground velocity of 30 in/sec, by modifying the
acceleration and time scales appropriately. Normalized displacements are given in Table 2
for each of the earthquakes.

The analysis was made on the high-speed digital computer at the University of Illinois
Digital Computer Laboratory for the normalized accelerograms for the earthquakes. The
results are plotted in Fig. 21 for a symmetrical resistance function, in which the resistance is
rigid-plastic but having the same value in each direction of motion. It appears from Fig. 21
that the results are bounded by the expression for energy V 2 /2gN, and also by the maximum
displacement Yo of the ground. Where the value of N approaches the maximum earthquake
acceleration, there is a reduction in response from that given by the energy expression, as
shown by the equation in the lower right-hand part of the figure, in which the correction factor
derived in equation (23) appears to be applicable. Apparently this is important only beyond
a value of N/A greater than 0·5.

Table 2

Earthquakes considered in analysis

Earthquake Maximum ground motions =1 Normalized *
displacement:

Acceleration Velocity Displacement: Duration: in.
g in/sec in. sec.

1. Ferndale, 21 Dec.,
1954, N45E - 0·205 10·5 8·26 20 27·7

2. Eureka, 21 Dec.,
1954, SllW - 0·178 12·5 10·0 26 51·2

3. Olympia, 13 April, I1949, S40W - 0·210 I 8·28 9·29 26 20·5
4. El Centro, 18 May, i

1940, N-S 0·32 I 13·7 8·28 30 25·5-
[

* Normalized to give acceleration = 0·50 g
and velocity = 30 in/sec.

Unsymmetrical resistance
When the motion takes place with a different resistance in the two directions, corresponding

to a mass sliding downhill, as in Fig. 19, the displacement is increased greatly. Although
there is a smooth transition between the value given in Fig. 21 and the greatly increased
value corresponding to completely unsymmetrical resistance, the results approach very rapidly
those corresponding to an infinite resistance in one direction. The results of calculations for
this case are summarized on Fig. 22. A conservative upper bound to the computed values
of displacement is given by the relation

V2 A
2gN'N (29)

This appears to indicate that the effective number of pulses in the earthquakes considered is
equal to the quantity A/N. If one multiplies equation (23) by AIN, one obtains a bound which
is somewhat closer in the region where N/A is larger than about 0·5, but is not conservative
for somewhat smaller values. For very low values of N/A, the number of effective pulses in
the earthquake apparently is no greater than 6 for the earthquakes considered. This, how­
ever, may be considered a peculiarity of the particular earthquakes examined. It would be
undoubtedly true that for earthquakes lasting for a longer time the number of effective pulses
would be greater. Preliminary studies indicate a relative value for longer durations roughly
proportional to the square root of the duration.



NEWMARK 127

Comparisons with model tests
The theoretical procedures described herein have been applied to tests of a model of a rock­

fill dam, described by Davis et at. (1960). The scale of the model was 1/300 of the prototype.
The dynamic tests of the model were made by striking a shaking table with a heavy pendulum.
A rebound of the pendulum caused a second input at a lower acceleration. Hence, data could
be obtained both for the initial strike and for the first rebound.

On the whole, the model tests indicated a fair agreement with the calculations, for com­
parable conditions. Within the accuracy of the records obtained in the tests, the measured
motions were in fairly good agreement with the results computed by means of equation (23)
and Fig. 21.
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Comments and conclusions
For the maximum probable earthquake in California, which is a reasonable maximum

earthquake for many other areas of the world, Fig. 22 may be used directly to obtain a
measure of the maximum displacement for unsymmetrical sliding. If the maximum resistance
coefficient is about 0,16, or about one-third the maximum earthquake acceleration, the net
displacement will be about 1 ft. If the maximum resistance coefficient N is about 0·20 times
the maximum earthquake acceleration, or N equals 0·1, the maximum displacement is about
5 ft. The maximum displacement increases rapidly as N decreases. Values of N in the range
of 0·1 to 0·15 are not uncommon for earth dams designed for earthquake resistance. Of course,
a design with a somewhat smaller value of N would have a smaller displacement if the earth­
quake were less intense. For an earthquake with a maximum acceleration of 0·25 g, and a
maximum velocity of 15 in/sec, the displacements computed would be one-fourth those quoted,
if the value of the ratio of N to A were the same. In other words, for the same relative value
of resistance coefficient, the displacement varies as the square of the ground velocity. This
displacement lowers the crest of the dam.

Russell
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Another factor that must be considered in the design of a dam is overtopping caused by
wave action. Such wave action can be initiated by slumping of the dam but it is more likely
to be caused bv slides from unstable natural areas in the reservoir. Slides of this sort caused
failure of the Vaiont Reservoir in Italy; the dam itself did not fail structurally.

Faulting or sudden settlement may also cause wave action. Such a settlement that took
place very rapidly at the dam itself caused the large waves at Hegben Lake (Anon, 1964).

Damage and serious danger may occur if an earth dam is in the neighbourhood of the fault
where the fault may intersect the dam and cause a break or fissure through it. When an
earth dam is founded on rock or a firm soil stratum, and is made of well compacted material,
the danger in an earthquake may be minimal. However, if the dam is located above a stratum
which can liquefy or lose its shearing strength an earthquake may cause a failure by spreading
of the dam even though the dam itself may have an ample factor of safety with respect to
failure in the material of the dam itself. In general, sites underlain by strata which may suffer
a major reduction in shearing resistance should be considered unsuitable unless the sensitive
strata can be removed.

Open cracks across the impervious section of an earth dam can form as a result of differential
settlement of the base of the dam, or as a result of differential movements within the body of
the dam, as well as a result of earthquakes. Transverse cracks may develop even in earth­
quake-free regions. Because an earthquake with even moderately large motions may introduce
fissures and cracking which may lead to piping, provisions should be made to induce self­
healing of open cracks. Dr Terzaghi has suggested that such provisions might consist of
establishing the impervious section of the dam, or core, between two layers of properly graded
cohesionless material. These layers should be only moderately compacted, and in each
layer the grain size should increase with increasing distance from the contact surface with the
impervious core. A method of this sort was adopted by Terzaghi for Mission Dam.

In arriving at the design of a dam which is required to resist earthquake motions one may
either adopt a procedure in which the static resistance of the dam is greater than the maximum
earthquake acceleration likely to be encountered, or one can make the dam capable of resisting
displacements corresponding to those computed by the methods described herein. The former
approach gives a misleading sense of security because of the fact that there are small displace­
ments that take place even when N equals A or exceeds it, owing to the fact that resisting
forces are developed even by elastic displacements less than the yield point. Hence the
motions can be of such a nature as to cause a reduction in shearing stress and a consequent
amplified displacement.

It may be required, to avoid permanent displacements altogether, that the value of N
be well in excess of the maximum earth~juake acceleration. This appears to be too unecon­
omical a procedure for general use.

For years engineers were convinced that foundations did not settle if they were adequately
designed. The methods introduced by Terzaghi concentrated attention on methods by which
the settlements could be determined and subsequent measurements indicated that almost all
foundations settle. One might expect that the same situation applies to earth and rock-fill
dams and embankments. When one concentrates attention only on the strengths and
neglects the displacements or motions, one is not likely to realize that these motions will take
place. It is desirable to try to keep them at a level such that they can cause no danger.
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ABSTRACT:  
The problem statement of theme C consists of the static and seismic stability assessment of a multi-faced rock "wedge" of an 
arch dam abutment. The exercise is based on the actual configuration of an existing double curvature arch dam located in 
Switzerland (Luzzone dam). In the problem statement, the dam and foundation rock geometry is expressed in finite element 
format. This model has been imported and validated in the finite element software midasGTS. Linear static analysis of the 
dam and the foundation rock (reservoir not modelled) has been carried out under self-weight, hydrostatic pressure, 
Westergaard hydrodynamic pressure and dam inertia forces when submitted to 1g unit acceleration in each direction. The 
resulting interface forces transferred from the abutment to the rock wedge have been post-processed for each considered load 
case. Uplift pressures (joint water pressures) have been independently assessed by surface integration. The assessed static 
forces acting on the rock wedge have been summed up and the static stability has been assessed using the Londe method. 
Three stochastically independent ground acceleration time-histories were provided in the problem statement to describe the 
earthquake to be considered when checking seismic stability of the wedge. Combinations of peak ground acceleration values 
have been used to determine the worst-case contribution of hydrodynamic pressures and dam inertia forces acting on the 
wedge during the earthquake. Considering that these dynamic contributions are small compared to the stabilizing effect of the 
wedge weight (<10%) and compared to the inertia forces of the wedge (<15%), it was chosen to keep these contribution 
constant and equal to their envelop values over the full earthquake time history. The uplift pressures were also assumed to 
remain constant and equal to their static values over the time history. Therefore, in the adopted approach, the inertia forces of 
the rock wedge were the sole forces that were instantaneously varied over time. The dynamic stability was assessed at each 
time step according to the Londe method. It was checked that the wedge was only submitted to sliding on its horizontal plane 
(base), while the two other planes remained open. The sliding displacements (sliding path) of the wedge were derived using 
the Newmark method. If the peak ground accelerations provided in the problem statement are assumed to apply locally to the 
wedge, no sliding is predicted and a minimum safety factor of 1.48 is found. If the effect of the site topography is assumed to 
lead to an amplification of the cross-valley acceleration by a factor 3, the adopted approach predicts a minimum safety factor 
of 0.76 and a total sliding displacement of 2.5mm. 
 
 
Introduction 
 
3D numerical analysis based on non-linear continuum 
mechanics is not commonly used in the current 
engineering practice to investigate the static and seismic 
stability of the abutment of arch dams. Such analyses are 
still costly to perform and it can be argued that the 
accuracy gained in the solution of the physical problem is 
not necessarily relevant in the view of the uncertainty 
with which certain input parameters are known. That is 
the reason why other approaches based on simplification 
assumptions are commonly preferred. Such methods have 
the advantage of allowing variation analysis at low cost 
to assess the relative weight of various parameters.  
 
The objectives of the current benchmark are multiple: 
- compare the performance of the various solution 

methods now available to the engineer, 
- compare the capabilities of the various numerical 

analysis software available to the engineer, 
- show the relevance and the influence of various 

physical phenomena, 
- show the relevance and the influence of various 

modelling assumptions, 
- assess the “human factor” in the spread of the presented 

solutions, 
- establish the current state-of-the-art, 
- conclude with a number of recommendations regarding 

the solution method, the modelling assumptions, the 
required capabilities of the numerical tool etc… 

 

This contribution aims at providing a solution using only 
tools which are steadily available in modern engineering 
firms: 3D solid linear static finite element analysis and 
standard spreadsheet application. Such a solution can 
constitute a basis against which the added value brought 
by the use of more advanced non-linear dynamic 
continuum mechanics might be assessed. The proposed 
approach has the advantage of clearly identifying the 
relative weight of the various parameters of the problem. 
 
 
Evaluation of Static Forces 
 
The finite element model provided in the problem 
statement has been imported in the software midasGTS, 
the 2D and 3D finite element software for geotechnical 
and tunnel analysis, distributed by TNO DIANA BV, the 
Netherlands. After fixing the connectivity between the 
dam and the foundation in the region of the dam toe, 
deleting the reservoir elements and adopting the concrete 
and rock properties provided in table 2.1 of the subject, 
the model has been run in linear static analysis under the 
following independent load cases: 
- self-weight (g = 9.81 m/s2) 
- hydrostatic water pressure with a reservoir level at 

1610.20 m.a.s.l. (triangular pressure distribution over 
depth). 

 
The finite element model, the orientation of the global 
axis system and the relative positioning of the rock 
wedge are shown in Figures 1 to 3. Displacement results 
for both load cases are shown in Figures 4 and 5. 
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Figure 1 : Birdseye views of the finite element mesh of the dam and rock foundation 
 
 
 
 

   
 (a)  (b) 
 
Figure 2 : 3D views of the finite element mesh of the dam, from upstream (a) and from the left bank (b) 
 
 
 

  
 (a) (b) 
 
Figure 3 : Positioning of the north and the rock wedge with respect to the dam. Top view (a) and side view (b). 
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For each load case, the total force transferred from the 
left abutment to the rock wedge above 1510 m.a.s.l. has 
been computed by vector summation of all nodal internal 
forces at the interface between the abutment and the rock. 
The obtained static forces are presented in Table 1. 
 
Table 1 :  Finite element static results 

FX FY FZ 
FE results  

Static forces 
[MN] [MN] [MN] 

Hydrostatic pressure (Qhs) -3236 -698 -3237 

Dam self-weight (Wd) 858.0 -3305.8 739.7 

 
Due to load redistribution in the dam body, the vertical 
component of the computed dam self-weight force, FY, is 
smaller than the weight of the dam volume above the 
rock wedge (abutment volume = 150 000 m3, abutment 
weight = 3800 MN). The finite element model does not 
take into account the fact that equilibrium under dam 
self-weight is actually achieved before grouting of the 
joints. Since the problem statement does not give any 
details on the dam joint locations and the dam 
construction sequence, the lower value computed by 
finite element is adopted, which is conservative with 
respect to rock wedge stability. 
 
The volume of the rock wedge is given equal to  
1.92x106 m3. This leads to a large self-weight force for 
the wedge, equal to Wws = 49920 MN. This is the main 
factor contributing to the stability of the rock wedge.  
 
The joint water pressure forces acting on the faces of the 
rock wedge, i.e. the uplift pressures, are assessed using 
numerical integration based on Figure 6. The in-plane 
geometry of the wedge faces is deduced from the natural 
terrain topography provided in appendix 12.a. Water 
pressures are assumed to vary linearly with depth. The 
water height distribution is determined based on the 
following assumptions: 
- water height is equal to reservoir level in areas 1 of 

plane 1 , 2 and 3; 
- water height is equal to the local natural terrain level in 

the area 2 of plane 1; 
- water height decreases linearly from reservoir level to 

natural terrain level in the areas 2, 3 and 4 of plane 3. 
The linear distributions follow locally the direction of 
the blue lines shown in Figure 6. 

 
These assumptions result in the values of “uplift” forces 
presented in Table 2. 
 
Table 2 :  Uplift forces obtained by surface integration 

UP1 UP2 UP3 Surface 
integration 

[MN] [MN] [MN] 

Uplift forces  10406 3226 14938 

 

Considering the orientation of the wedge faces, the uplift 
pressures can be expressed in the global coordinate 
system, see Table 3. 
 
Table 3 :  Uplift forces expressed in XYZ system 

FX FY FZ 
Uplift pressures 

[MN] [MN] [MN] 

UP1  9167 4397 2215 

UP2  997 780 -2966 

UP3  0 14938 0 

ΣUPi  10165 20116.2 751 

 
The summation of all forces acting on the wedge (self-
weight, hydrostatic force and uplift pressures) results in 
the values presented in Table 4. 
 
Table 4 :  Total static force acting on the wedge 

FX FY FZ 
Static forces 

[MN] [MN] [MN] 

Total force 7787 -33807 -3249 

 
 
Static Stability 
 
Using the Londe method, see ref. [1] and [2], it can be 
checked that, for the considered wedge and the obtained 
static forces, the likely mechanism corresponds to sliding 
on the base face (plane 3), opening of the back face 
(plane 2) and opening of the side face (plane 1). With 
respect to this mechanism and assuming that the 
characteristic friction angle of the base face is 35°, static 
stability is worked out and presented in Table 5. 
 
Table 5 :  Static stability analysis of the wedge 

D S SF 
Stability analysis  
static equilibrium 

[MN] [MN] [-] 

Results 8437 23671 2.81 

 
D =   destabilizing force,  
  i.e. projection of the total force on plane 3 

S =   stabilizing force 
  i.e. friction capacity of plane 3 

SF = S/D safety factor 
 
In static equilibrium, the rock wedge is very stable. 
Under these forces, the critical friction angle would be 
equal to 14°. 
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Figure 4 : Vertical displacement under self-weight. 
 
 

 
 
Figure 5 : Horizontal displacement under hydrostatic pressure: 110 mm max. 
 
 
 
 
 

 
Figure 6 : Assumed distribution of joint water pressures on the faces of the rock wedge 
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Evaluation of Dynamic Forces 
 
Under seismic loading, the rock wedge will be subjected 
to the following additional forces: 
- inertia forces of the rock wedge; 
- inertia forces of the dam acting on the abutment; 
- hydrodynamic forces of the reservoir acting on the dam 

and transmitted to the abutment. 
 
It is assumed that uplift pressures are unaffected by 
dynamic effects. Consequently the dynamic stability 
analysis is performed using the same value for the uplift 
pressures than in static analysis. This assumption is 
supposed to remain valid even in case of joint opening.  
 
Since the rock wedge is a solid embedded in the 
surrounding ground, the inertia forces acting on the 
wedge are obtained by multiplying the wedge total 
weight by the ground acceleration vector at each time 
step: Iw = 4992 [106 kg] x a(t) [m/s2]. 
 
The instantaneous inertia forces of the dam depend on the 
dynamic response of the dam structure to the earthquake 
and on the boundary condition provided by the reservoir. 
An eigen mode analysis of the dam alone (reservoir and 
foundation not modelled) is performed using the finite 
element model. The two first eigen modes (antisymmetric 
and symmetric) have an eigen frequency close to 2 Hz. 
On the other hand, the spectra of the seismic signals show 
significant magnitude in the range 1 to 5 Hz. It can 
therefore be concluded that adopting an “instantaneous 
pseudo-static approach” for the dam mass subjected to 
ground acceleration would not provide realistic 
assessment of the instantaneous dam inertia forces. 
Similarly, using an added water mass in an 
“instantaneous pseudo-static approach” to assess the 
hydro-dynamic effect would certainly not yield realistic 
results.  
 
Considering that the magnitude of dam inertia forces and 
hydrodynamic forces are small compared to the 
stabilizing effect of the wedge weight (<10%) and 
compared to the inertia forces of the wedge (<15%), it is 
chosen to make an assessment of the peak values of these 
contributions based on an “envelop pseudo-static 
approach” and keep these contributions constant over 
time during the dynamic wedge stability analysis.  
 
The peak hydrodynamic forces are assessed by 
considering added water mass subjected to the peak 
upstream-downstream component of the acceleration. It 
is assumed that vertical and cross-valley components of 
the accelerations would not have a significant hydro-
dynamic effect.  The Westergaard formula, see ref [3], is 
therefore applied with the peak acceleration in the Z 
direction, aZ, in order to assess the peak hydrodynamic 
pressure on the dam: 

( ) ( )2

1

....
8

7
yHa

wZyP γ=  

 
This pressure is applied as a static load in the finite 
element model and the corresponding force transferred 
from the abutment to the rock wedge is computed, see Qds 
in Table 6.  
 
Regarding the inertia forces of the dam, each acceleration 
direction contributes differently to the destabilization of 

the wedge. Since the oscillation of the dam will produce 
filtering and out-phasing of the signals coming from the 
various directions, any combination of positive/negative 
peak values is possible. The worst-case directional 
combination with respect to wedge stability cannot be 
decided “a priori”. The following procedure is therefore 
adopted: 
- the finite element model of the dam and its rock 

foundation is submitted to 1g acceleration in each 
direction X, Y and Z and solved in linear static 
analysis; 

- the resulting inertia forces transmitted from the 
abutment to the rock wedge are computed for each 
acceleration direction, see Table 6; 

- 26 acceleration combinations are generated considering 
that, for each direction, the acceleration can have the 
value +peak, zero or –peak; 

- for each acceleration combination, the inertia forces are 
multiplied by the corresponding acceleration value 
(expressed in g unit) and the total dam inertia force is 
deduced by superposition (linear system assumption); 

- for each combination, the dynamic stability analysis of 
the wedge is performed keeping the dam inertia forces 
constant; 

- the worst-case combination regarding stability is 
selected. 

 
Table 6 :  Finite element pseudo-static results  

FX FY FZ 
FE results  

Pseudo-static forces 
[MN] [MN] [MN] 

Hydrodynamic force (Qds) -1119 -299 -1149 

Dam inertia force  
under 1g acceleration in X 

4177 82.7 1134 

Dam inertia force  
under 1g acceleration in Y 

-858.0 3305.8 -739.7 

Dam inertia force  
under 1g acceleration in Z 

3180 995.2 6098 

 
 
Dynamic Stability 
 
Two cases have been investigated:  
a- provided ground acceleration histories are assume to 

apply to the rock wedge without modification; 
b- site effect is assumed to lead to an amplification of 

the cross-valley component of the acceleration by a 
factor 3. 

 
For both cases, the wedge stability has been studied by 
applying the Londe method at each time step. When the 
computed safety factor is smaller than 1, the wedge is 
supposed to slide in the direction of the destabilizing 
force. It should be noted that the destabilizing force, 
having a static and a dynamic contribution, is not 
necessarily collinear with the acceleration vector. The 
stabilizing force, i.e. the friction capacity of the base 
plane, is assumed to instantaneously adopt the same 
direction as the destabilizing force.  
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Determination of worst-case combination
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Figure 7 : Determination of worst-case acceleration combination with respect to sliding displacement for case b- 
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Figure 8 : Sliding path on the horizontal plane 3 for case b- 
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The obtained out-of-balance force produces a relative 
acceleration of the wedge, which is integrated over time 
steps using the Newmark method, see ref [4].  
 
In case a-, this approach leads to predicting no sliding 
and a minimum safety factor of 1.48. In case b-, it results 
in a minimum safety factor of 0.76, and to a total sliding 
displacement of 2.5 mm. Sliding occurs over a short 
cumulated period of time of 340 ms. 
 
Detailed results are delivered in excel format for cases a- 
and b-. Figure 7 and 8 present the results of case b- 
(cross-valley acceleration multiplied by 3) in graphical 
format. Figure 7 shows the sliding displacement obtained 
for each of the 26 possible combinations of acceleration 
components. The worst-case combination with respect to 
stability is case 4, which corresponds to the values: 
 aX = +0.48g;  aY = +0.1067g;  aZ = -0.16g 
 
The sliding path on plane 3 is shown in Figure 8. It can 
be checked that the wedge slides away from planes 1 and 
2.  
 
Discussion 
 
The presented solution is based on a number of 
assumptions which are discussed below. 
 
The uplift pressures have been assessed based on an 
“assumed” conservative distribution of water height in 
the rock wedge. In reality the water height distribution 
depends on the location and the performance of the 
drainage curtain. Taking into account a less conservative 
distribution of water heights, for instance a more efficient 
drainage, would significantly increase the stability of the 
rock wedge. 
 
The water pressure in joints during seismic loading is 
traditionally assumed to remain constant over time and 
equal to its static value. It is not well known however 
how these pressures actually evolve during an earthquake, 
especially when joints are opening due to wedge sliding. 
It could be argued that, under the high frequency of 
earthquake loading, undrained effects will take place. To 
what extent does water have time to flow into the joint to 
fill the opening gap? 
 
In the presented assessment of the forces acting on the 
wedge, the arch dam was assumed to behave linear 
elastically. The sources of non-linearity in the behaviour 
of the arch dam are however multiple: 
- equilibrium under dam self-weight takes place before 

construction joints are grouted; 
- gap opening at dam-rock interface is likely to occur 

locally, especially at dam toe; 
- plain concrete is subject to non-linear behaviour such 

as cracking and creep. 
 
Similarly, the rock foundation was assumed to be 
homogenous and to behave linear elastically. However, 
this natural material is likely to be non-homogeneous, 
non-anisotropic and to behave non-linearly. For instance, 
the presence of fault or local alteration of the rock might 
influence significantly the static and dynamic response of 
the dam.  
 

As is commonly the case, the eigen frequencies of the 
dam lie in the frequency range of the earthquake 
spectrum. This implies that, compared to the ground 
motion, amplification for certain frequencies and out-of-
phase arrivals of dam motion will occur. Regarding the 
rock wedge stability, and compared to forces assessed 
using a pseudo-static approach, this effect will induce 
differences in magnitude, in direction and timing of the 
dynamic forces acting on the rock wedge. In our case, the 
relatively large weight of the considered wedge can 
justify neglecting these effects. If the wedge was however 
smaller, such effects might become prominent when 
checking wedge stability. 
 
The site topography (valley) can have a significant effect 
on the seismic wave when reaching the ground surface. 
The site effect can include amplification and 
deamplification, differences in frequency content and 
out-of-phase arrivals of the ground motion at different 
locations of the interface of the ground and the structure. 
At present, such analyses are not commonly performed 
because realistic modelling of the site with the irregular 
topography and geology would be either too costly or not 
well constrained by data on the characteristics of the 
geologic materials. It is known however that deep valley 
topography, common for arch dams, can be the cause for 
significant amplification of the cross-valley ground 
motion. It was shown in the present case study that an 
amplification of the cross-valley acceleration by a factor 
3 can make the difference between a stable and a sliding 
abutment wedge. This is therefore identified as a key 
factor influencing abutment stability which should not be 
overlooked for design. 
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1. Introduction 
One of the most important aspects in the stability analysis of arch dams, which has been encountered for 
many years, is the stability of the abutment. This study is aimed to evaluate within the Tenth Benchmark 
Workshop on Numerical Analysis of Dams-Theme C, the abutment stability of Luzzone arch dam under 
static and seismic loadings. At first the three dimensional model of the dam has been transferred for being 
applicable in the finite element program of Abaqus 6.7. 
With the FEM the interface forces between concrete dam and wedge are calculated for the required loading 
cases. The stability analysis of the given wedge is evaluated by Londe method. 
 
2. System Assumption 
 
2.1. Luzzone dam 
The Luzzone dam is a double curved concrete arch dam which was initially built in the sixties. The dam 
was heightened within the ninetieths. The total height of the dam is 225 m.  
Figure 1 shows the Luzzone dam. 
 

 
 

Fig. 1: Luzzone dam 
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2.2. Wedge definition 
For the benchmark in the left bank of the dam are two geological joints. With these joints a wedge is 
defined and has a potential to slide under arch dam and uplift loading. To verify about this situation a 
stability assessment is necessary. The volume of the wedge has been estimated as 361092.1 m× . The 
wedge position is shown in figure 2.  
 

      
Fig.2: Finite element model of dam and foundation and Geometry of the wedge 

 
 
2.3. Material properties 
The material property of the mass concrete dam and foundation are defined as: 
  
Concrete of dam: 
Density ( ρ ) = 2400 kg/m3   
Poisson ratio (ν ) = 0.167                                  
Modulus of elasticity (E) = 27 GPa 
Rayleigh damping coefficients: α =0.6 and 
β =0.001 
Foundation rock: 
Density ( ρ ) = 2600 kg/m3 
Poisson ratio (ν ) = 0.2 
Modulus of elasticity (E) = 25 GPa 
Rayleigh damping coefficients: α =0.6 and 
β =0.001 
 
Water: 
Density ( ρ ) = 1000 kg/m3 
 

`` 
 
 
 
 
  
  
 

 
 
 
 
 
 
 
 

Fig 3: Material properties of dam and foundation 

 
It should be mentioned that in calculating the interface forces between dam and wedge, only the stiffness of 
foundation is considered and density of it is taken as zero. In other words a massless foundation is 
considered.  
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2.4. Loading 
The static and seismic load cases are considered to calculate the dam-foundation interface forces. In the 
self-weight condition the dam is considered monolithic and isotropic material behavior is used. 
Under the reservoir full condition the hydrostatic pressure is applied to the dam’s upstream surface 
according to the programs loading definition.  
 

Fig 4: Cross section of the dam 
 
For seismic analysis, three stochastically independent acceleration time histories are used according to the 
data provided by the formulator. These accelerations are scaled according to the peak ground accelerations 
of these components are: 
 
Downstream-upstream (X- direction) = 0.16 g 
Vertically upwards (Y- direction) = 0.1063 g 
Cross valley direction (Z- direction) = 0.16 g 
 
In wedge stability assessment uplift pressure at the wedge interfaces is considered very conservative, and 
all planes are under full uplift pressure. 
 
3. Calculation Procedure 
Figure 2 presents the finite element model of the dam. This model is created within Abaqus 6.7 and linear 
elements (C3D8) are used to define dam and foundation body. 
The dam-foundation interface is modeled as a joint with a high friction coefficient to reduce relative 
displacement between dam and foundation to a minimum. The resultant forces transmitted between dam 
and wedge are computed as the sum of pressure and shear stresses at the wedge dam interface. 
 
For the seismic analysis direct time history approach is used and hydrodynamic pressure is computed by 
Westergaard’s added mass method. According to Westergaard, the hydrodynamic pressures that the water 
exerts on the dam during an earthquake are the same as if a certain body of water moves back and forth 
with the dam whiles the remainder of the reservoir is left inactive. The added mass per unit area of the 

upstream wall is given in approximate form by the expression )(
8
7 yhh www −ρ  , where wρ  is the density 

of water. 
 
It should be mentioned that in calculating the interface forces between dam and wedge, only the stiffness of 
foundation is considered and density of it is taken as zero. In other words a massless foundation is 
considered for the dynamic dam analysis. 
 

1385 m 

1510 m 

1610 m 
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4. Stability of wedge 
The next step for the analysis is to evaluate is to evaluate the wedge stability. For this purpose Londe 
method for stability of rock slopes is used and some simplifying assumptions are made. The volume of the 
wedge is limited by intersections of three planes (Planes Plane1, Plane2 and Plane3 in the figure 2). This 
assumption is conservative as the natural surfaces are generally irregular [2]. The wedge is considered as a 
rigid body and the geometry of the wedge would not change during application of the forces throughout the 
investigation. Cohesion and tensile strength are neglected in the contact planes and therefore, it is supposed 
that the friction between surfaces is the only parameter that can resist sliding. It is supposed that the 
moments of the forces have negligible influences and can be ignored. The applied forces can be categorized 
as: 
 

- Weight of the wedge (Ww) 
- The thrust force which is the resultant force at the dam wedge interface. This force is time 

dependent and its magnitude and direction will change by time. So this force can be defined by Fx, 
Fy and Fz.  

- The forces due to uplift pore pressure: U1, U2 and U3 which are applied to the planes 1, 2 and 3 
respectively- these forces do not change during investigation. 

- Seismic forces due to applied earthquake: the three components of seismic forces are considered 
as the max, may and maz which m is the mass of the wedge and ax, ay are az are acceleration time 
histories which were defined before. 

- The reaction of planes: due to applied forces, three reaction forces will develop on the planes (N1, 
N2 and N3). As mentioned before these forces can only be compressive. Tensile forces, which 
mean that the plane is open, are not acceptable and will lead to a different sliding mode 
respectively exclude sliding in the decoupling plane due to tensile forces. 

 
For wedge stability evaluation at first the three plane reaction forces are to be calculated by solving static 
equilibrium equations in three direction x, y and z, Figure 5-a. For this wedge geometry and applied forces, 
due to equilibrium condition and calculated plane reaction forces, eight cases are possible. Table 1 shows 
all possibilities.  
 

- Case 1: All plane reaction forces are compressive: all planes are in contact and the wedge is 
perfectly stable.  

 
- Case 2: The reaction force of plane 1 is tensile, but the other two reaction forces are compressive 

(N1>0, N2<0 and N3<0). In other words plane 1 is open but planes 2 and 3 are in contact yet. In 
this case to check the movement along the intersection of plane 2 and 3 the force in this direction 
is calculated. For this purpose the equilibrium equation is solved with these three existing forces, 
N2, N3 and S23 again, Figure 5-b. Then the stability factor can be calculated accordingly: 

 

3322

23

tantan ϕϕ NN
SSF
+

=  

 
If the safety factor is less than one the rupture will occur and wedge will move along intersection 
line of planes 2 and 3. 
 

- Case 3: Sliding along the intersection of plane 1 and 3 (N2>0, N1<0 and N3<0). This case is 
similar to case 2. 

 



 5

- Case 4: Sliding along the intersection of plane 1 and 3 (N3>0, N1<0 and N2<0). This case is 
similar to case 2. 

 
- Case 5: Sliding in plane 3 (N1>0, N2>0 and N3<0). In this case the only plane which remains in 

contact is plane 3. The normal and shear forces of this plane are calculated again by solving the 
equilibrium equation and ignoring the plane 1 and 2. The Safety factor reads accordingly: 

 

33
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- Case 6:  Sliding in plane 2 (N1>0, N3>0 and N2<0). This case is similar to case 5.   
 
- Case 7: Sliding in plane 1 (N2>0, N3>0 and N1<0). This case is similar to case 5.  

 
- Case 8: N1>0, N2>0 and N3<0. In this case all planes are open and the wedge is obviously freely 

moving.  
 
The wedge stability safety factor of the dam during the earthquake is plotted in the figure 6. As shown, the 
safety factor for a short period of time is less than 1, which means that the wedge would move during this 
time period. The concept of Newmark’s method is used to calculate displacement of the wedge.  
 
 

 
 
 

Fig. 5-a: Normal contact forces 

 
 
Fig. 5-b: Contact forces for case 2(sliding along the 

intersection of planes 2 and 3)  
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Case Nature of sliding Contact faces Open Faces Diagram

1 No sliding 1, 2, 3

2 intersection of Planes 2,3 2, 3 1

3 intersection of Planes 1,3 1, 3 2

4 intersection of Planes 1,2 2, 3 3

5 in plane 3 3 1, 2

6 in plane 2 2 1, 3

7 in plane 1 1 2, 3

8 in space 1, 2, 3

 
Table 1: all possible movement cases of the wedge 

 



 7

 

Fig. 6: Sensitivity Analysis - wedge stability uplift assumption 
 

 

 
Fig. 7: Sensitivity Analysis - Wedge stability  – Static / Dynamic Loading 
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5. Displacement of the wedge 
To calculate the displacement of the wedge in the first step acceleration of the wedge is calculated in the x, 

y and z direction. The magnitude of the acceleration is 
wedgetheofmass

ForcegStabilizinForceDriving −  and its direction 

is being defined due to the movement case. (For one plane sliding the resultant acceleration is decomposed 

due to the applied forces, for example in case 2, 
m

NF
aand

m
NFa yy

y
xx

x

)tan()tan( 33 ϕϕ −
=

−
= , but for 

two planes sliding the direction is the intersection of corresponding planes which is constant) 
 
Displacement of the wedge is the double integration of this computed acceleration. The integration should 
continue till the velocity in the considered direction vanishes. For the assumed uplift pressure and failure 
mechanism of the wedge no sliding during dynamic analysis occurred. 
 
 6. Conclusion 
Under the assumption of a rigid body wedge the analysis is carried out for dead weight, water loading and 
uplift. No variation of the earthquake acceleration along the valley is assumed.  
The uplift pressure at the wedge interface is varied, and for an engineering assumption of the uplift pressure 
the factor of sliding safety is 3,15. During dynamic analysis this factor of safety reduces to 1,41. 
 
In a further step, with the help of FEM the wedge is suggested to be analyzed as deforming body and with 
this the stability of the abutment. In addition, the dynamic analysis of the dam should be carried out with 
acoustic elements, to better account for the dam reservoir interaction. However, these assumptions are used 
normally, but were out of scope of this benchmark. 
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1. Introduction 
 
This work deals with the arch dam behavior and foundation stability under seismic loads. 

Software ANSYS was used for calculations. A number of calculations including static and 
dynamic load ones have been executed. The main goal was to determine impacts from the dam 
side on a part of embankment abutment situated on the left bank above 1510 m elevation due to 
earthquake, where according to the data of the test task there is a zone of potentially possible 
shear. 

 
2. Description of the task and initial data 
 
The initial data of the task were submitted by the conference organizers. Luzzone arch 

dam (Switzerland) is investigated. This dam built in 1963 and heighted in the end of nineteenths 
is of 225 m height, 36 m foundation thickness and of crest thickness equal to 10 and 4 m for the 
old and new parts correspondingly. The arch length is 530 m. Crest elevation is 1609 m. More 
detailed information is in the task of the formulator [1]. The formulator presented a 3D model of 
the dam on a rock foundation. The model is in the text format and in the commands of the finite-
elements complex TNO Diana, version 9.2. There have been given the parameters of the material 
and foundation within linear-elastic model as well as the topography of the weakened zones 
where the detachment of a part of the rock massif is possible. It is also given the reduced internal 
friction coefficient for the weakened zones accepted in this test task. According to the submitted 
information some decompressed structures are in the rock foundation on the left bank. For the 
present task the formulator has chosen the potentially unstable site on the dam left bank formed 
by the horizontal plane at the 1510 m elevation and also by two planes defined in the task [1]. 
Stability is estimated assuming that one of these planes has been cracked.  

During preparation for evaluations the geometrical model was imported from the text file 
with the command in the format TNO Diana into the finite-element complex ANSYS. As the 
direct import from this format is not supported by ANSYS we developed software in program 
language C++ to import the geometry. At that there have appeared several complications 
connected with the description of some geometrical primitives inadmissible for the ANSYS 
complex. Particularly the ANSYS does not support determination of line segments with different 
numbers but with the same end points forming these segments. It also does not support the 
surfaces with different numbers but formed by completely coincided lines systems, etc. These 
incompatibility problems have been partially solved by re-numeration of all primitives of the 
level lower than the ANSYS “volumes” (i.e. points, lines and surfaces) during import into 
ANSYS package. After that the 3D model has been divided into finite elements according to the 
data (a number of line splitting, mesh concentration to the definite points) specified in the file of 
Diana commands. 

The obtained finite-element model is given in Fig.1. The model consists of 14814 
serendipity 3D elements of the second order accuracy of “Solid95” type. At that a number of the 
elements in the dam is 2504, a number of elements in the foundation - 12310. Total number of 
nodes is 62518. The dynamic loads from the reservoir water are substituted by added masses. 
The values of the added masses are chosen according to the Russian Rules and Regulations for 
Building Design (SNiP II-7-81*, Construction in seismic regions). The quantity of the added 
mass elements in the horizontal direction along the stream is 1783. The added masses in the 
direction across the stream are not taken into account.  



Calculations of the dam-foundation system for the affect of both static and seismic loads 
have been fulfilled using the linear-elastic model. So the different load cases may be just 
summed up to obtain the final load case (statics + seismics). 

 

 
 

Fig. 1. ANSYS finite element mesh. 
 
 
3. Calculation for static loading 
 
The dam dead weight loading and hydro-static pressure have been evaluated. According 

to the formulator task the height of water surface was taken equal to 1610.2 m that corresponds 
to the overflow over the concrete dam crest with the reservoir overflow. Distribution of the 
hydro-static pressure by the upstream face obtained in ANSYS is given in Fig. 2. Calculation 
results are given in Fig. 3. The total load acting from the dam side on the foundation wedge (dam 
thrust) in the left bank is presented in the Table 3. Dam thrust was calculated by summing up 
finite element nodal loads acting from the dam elements to wedge elements over the left bank 
dam nodes located above elevation 1510 m. 
 



 
 

Fig. 2. Distribution of the full hydrostatic pressure, Pa. 
 
 

 
 

Fig. 3. Upstream displacements on deformed mesh (“Z” direction), m. 
 
 

4. Calculation for seismic loading 
 
To determine seismic load there have been used the data of free surface acceleration in 

the dam region (accelerograms) submitted by the formulator of the test task. 
In Table 1 are given natural frequencies of the dam without added masses (empty 

reservoir) as well as with added masses (reservoir elevation 1610.2 m.a.s.l.). 
The calculation has been done on inertial base. On the region boundary there have been 

installed dampers chosen according to [2] (formulas (34), (35)) to reduce the effect of seismic 
wave reflection from the boundary. The dam calculation on the inertial base is carried out by 
applying in every time step the inertial seismic forces only to the dam units (by multiplying the 
seismic accelerations by the dam mass matrix). As mentioned in [3] some commercial finite-



element packages do not have this possibility as built-in, however in ANSYS it can be done 
either by built in command (“CMACEL”) or manually as it has got an command language that 
allows us to write macros for applying of the appropriate inertial loads in every time step. The 
dam calculation on the inertial base has got such benefit that permits to take into account the 
effect of excited waves attenuation due to presence of damping in the model and, thus, it is not 
so exacting to the boundary conditions on the foundation boundary (it is quite difficult or even 
impossible to make a real non-reflecting boundary within the ready finite-element package, 
dampers reduce wave reflection but doesn’t totally eliminate it). Time histories of total forces 
affecting on the potentially unstable foundation wedge are given in Fig. 5. 

It should be noticed that the seismic load affecting the wedge consists of two 
components: the dam thrust force and the inertial load caused by the wedge acceleration under 
the seismic loads. At that the total acceleration is formed of the free field acceleration, given in 
the initial accelerogram [1], and the additional acceleration caused by the dam presence. The 
Table 2 contains the maximum and minimum values for the free field accelerations, relative 
accelerations, averaged by the wedge volume, obtained in the calculation in the corresponding 
time moments, as well as their sum equal to the absolute wedge acceleration. The table shows 
that the dam presence does not significantly influence on the foundation acceleration in the 
wedge area that can be explained by relatively small mass of the arch dam (in comparison, e.g., 
with gravity ones). Although insignificant reduce of accelerations due to additional dam mass is 
noticeable but it is so small that in this case it can be ignored during stability calculation. 
Therefore the inertial forces are evaluated according to the initial accelerogram. Thus, the 
greatest inertial forces affecting the wedge have been calculated on the basis of the wedge mass 
(4.992⋅109 kg) and data by maximum peak ground accelerations (0.16g, 0.1067g, 0.16g by the 
axes X, Y, Z correspondingly) and were about 8⋅103 MN by the horizontal axes X, Z and 5.3⋅103 
MN along the vertical axis Y. Dam thrust time history caused by seismic load only (without the 
static addition) is shown in Fig. 5. The maximum values of the forces were 1.5⋅103 MN, 1.5⋅103 
MN, 3.6⋅103 MN along the axes X, Y, Z respectively. At calculation of the total load (statics + 
seismics) the direction of the seismic loads was chosen to create the most unfavorable conditions 
for the wedge (with the sign “+” along the axes X and Y and with the sign “-“ along the axis Z). 
The Table 3 contains the values of individual summands used in the calculation of the total load. 
The total load at seismics is given in the resultant Table 4. 

 
 

 
 
Fig.4. 3-component free-field acceleration time history, [1]. 
 
 



 
 

 
 

 
 
Fig. 5. Dam thrust caused by seismic loading (MN). 
 
 



 
 

 
 

 
 
Fig. 6. Inertia force acting on the wedge caused by seismic loading (MN). 
 

 
5. Determination of hydrostatic uplifts by detachment planes 
 
As it has been stated in [1] there was registered a considerable level of seepage on the left 

bank of the dam. This circumstance results in forces affecting the wedge by possible detachment 
planes. The table of the initial parameters from [1] contains areas of the selected shear planes 
under the upstream level. However, in case of seepage through the foundation groundwater level 
drop goes by the saturated surface. Precise determination of this surface requires seepage 
calculation. In this case the task of seepage calculation was more complicated due to the absence 
of data on the permeability coefficient for the dam foundation and data on drainage measures 
(drainage holes and galleries) carried out for the left bank of the dam. In the present work the 
seepage calculation was substituted for the approximate evaluation of possible hydrostatic uplifts 



based on the topographic data. To provide illustration on Fig. 7 we show the compositing of the 
site topography and planes of possible shear taken from the task [1], annex 12.a, on the map with 
the marked dam (map with dam situation is taken from www.swissdams.ch). Fig. 8 contains 
views of 3D pattern from [1] for the investigated wedge with headwater decrease marked by 
lines and taken in this calculation; the contour of the dam support is also marked on the wedge. 
The hydrostatic uplifts used in the stability calculation were given in the separate columns of the 
resultant Table 4 to provide greater possibilities for comparison of the results obtained by 
participants (due to some uncertainty of these forces). 

 

 
 

Fig. 7. Foundation wedge ([1], annex 12.a), dam situation (www.swissdams.ch) and finite 
element model coordinate system combined in single picture. 

 

    
 

Fig. 8. 3D pattern of the foundation wedge. 
 



6. Calculation of dam foundation stability 
 
Foundation stability was calculated by evaluation of the wedge, given in the task [1], on 

shear along the edges of the dihedral angle (see [4], [5]). At that the wedge is a solid body and 
loads affecting it are considered uniformly applied to the whole wedge without taking into 
account a moment component. The sketch of acting forces on the wedge is presented in Fig. 9. 

 

 
 

Fig. 9. Foundation wedge and acting forces, picture is taken from [5]. 
1– arch dam; 2 – sliding plane J1; 3 – horizontal sliding plane Jh; 4 – plane J2 (crack); 5 – J1 and 
Jh intersection line; 6 – wedge contour on daylight surface; 7 – topographic contours. 
 

The factor of stability can be calculated by formula: 

T
CSCStgNtgNK hhhh

s

+++
= 1111 ϕϕ

, 

where  R is vector of total loads acting on the wedge;  N1 and  Nh are components of R normal to 
planes J1, Jh respectively; T is component of R parallel to the intersection line 5 (see in Fig. 9); 
φ1, φh are internal friction angles; S1, Sh and C1, Ch are J1, Jh surface areas and cohesion values. 

The results of the stability calculation under static loads are presented in the Table 4. It 
shows that the stabilizing force is 7.5 times greater than the driving force and so the safety factor 
in this case is quite large.  

It should be noticed that the seismic load given in Table 4 is maximum and is achieved 
only for a very short time period, so even the exceeding of the forces restraining the wedge due 
to this load leads only to some accumulation of displacements in time, the total value of which 
during the accelerogram action permits to make a conclusion of the foundation reliability. 
Nevertheless the fulfilled stability calculation demonstrated that even at maximum load the 
restraining forces will not be exceeded and there will not be any displacement. The ratio of the 
shearing force to restraining force was 1.68. Also it should be remembered that the calculation 
has been carried out according to the hydrostatic uplifts given and approximately determined in 
the previous paragraph. More accurate determination of these uplifts can lead either to increase 
or decrease of the stabilizing forces. 
 



7. Supplementary information 
 
After the completion of this work in the initial version it was recommended by the 

formulator to determine the factor of stability for the massif under examination assuming that the 
peak value of acceleration was 0.46g, 0.1067g and 0.16g along the axes Ox, Oy and Oz 
respectively. 

The factor of stability for new initial data was determined with approximation as follows. 
Seismic load along the axis Ox was increased by the ratio of  0.46/0.16, i.e. 2.875 times in 
comparison with the values of 1500 MN (seismic load, dam thrust) and 8000 MN (seismic load, 
inertia), which are presented in the Table 3. The obtained values were 4312.5 MN and 
23000 MN, and the corresponding total load value proved to be equal to 25902.5 MN (instead of 
8090 MN, as shown in the Table 3). Values Fy and Fz were left without changes. The factor of 
stability was calculated by the formula (1) and the obtained value is 1.005. 

Then another case was examined, where the peak value of acceleration was 0.16g, 
0.1067g and 0.48g along the axes Ox, Oy and Oz respectively. The calculations performed by 
the same method showed that the factor of stability is equal to 0.792. 

 
 

Tables 
 

Table 1. Natural frequencies of the dam. 

№ 

Eigen frequency 
No added 

masses (empty 
reservoir) 

With added masses 
(reservoir elevation 

1610.2 m.a.s.l.) 
1 1.891 1.152 
2 2.001 1.243 
3 2.727 1.787 
4 3.256 2.240 
5 3.633 2.293 

 
 
Table 2. Peak values of free field accelerations, corresponding time moments, relative and 
absolute wedge accelerations. 

Parameter Dimensions Direction 
X Y Z 

Max. Free Field 
Acceleration m/s2 1.57 0.94 1.57 

Time moment t1 s 4.96 9.59 6.00 
Relative 
Acceleration (t1) 

m/s2 -0.02 -0.07 -0.11 

Absolute 
Acceleration (t1) 

m/s2 1.55 0.87 1.46 

Min. Free Field 
Acceleration m/s2 -1.19 -1.04 -1.55 

Time moment t2 s 4.25 9.72 6.65 
Relative 
Acceleration (t2) 

m/s2 0.02 -0.02 0.06 

Absolute 
Acceleration (t2) 

m/s2 -1.17 -1.06 -1.49 

 



Table 3. Static and seismic loads acting on the wedge. 

Results 
Case 

Forces Acting on the Foundation Wedge 

FE model coordinate system Absolute value, dip angle and dip 
direction of the force 

Fx 
MN 

Fy 
MN 

Fz 
MN 

FR 
MN 

Fα 
° 

Fβ 
° 

Static Load 
Fsw(0) 590 -4480 640 4564 79,0 38,6 

Static Load 
Fhyd(0) -2000 -1710 -5540 6133 16,2 241,4 

Static Load 
Ftot(0) -1410 -6190 -4900 8020 50,5 245,2 

Seismic 
load (dam 

thrust) 
1500 1500 3600 4179 -21,0 58,7 

Seismic 
load (inertia) 8000 5300 8000 12494 -25,1 36,3 

Total load 8090 610 -16500 18387 -1,9 -72,6 

 
 
Table 4. Final results. 

Result 
case 

Design Interface 
Forces 

(Dam thrust) 
MN 

Design Hydrostatic 
Uplift 
MN 

Active Forces 
normal to 

planes 
MN 

Driving 
Force, 

MN 

Stabilizing 
Force, 

MN 

Factor
of 

Stability

Fx Fy Fz U1 Uh U2 Nh N1 Ks 
Static 
load -1410 -6190 -4900 1872 1889 631 52676 870 5028 37493 7,5 

Seismic 
load 8090 610 -16500 1872 1889 631 46487 — 19417 32550 1,68 
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