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1.- FOREWORD

All civil engineering structures, and particularly dams and reservoirs, should meet the
highest requirements of safety and economy. Large dams provide extraordinary benefits to
society, but, at the same time, dams impose high potential risks over population and
properties downstream. In this context, and in the field of dam engineering, risk-based
analysis techniques are being developed, offering not only a complementary view to the
classical approach to dam safety, but also an entire new tool that can help robust
management of dam safety, including some useful criteria to rationalize dam investments
and a better understanding of the risk posed by dams.

Risk analysis methodologies need risk quantification. For an initial state of the dam-
reservoir system, and for a certain failure mode, this risk quantification requires the
estimation of both the probability of the loading scenarios and the conditional probability
of the associated response of the dam-reservoir system, together with the estimation of the
consequences.

In dam engineering, the main loading scenarios are those of hydrological and seismic
nature. Hydrology and seismic engineering are well established sciences with a wide and
solid body of knowledge which is constantly in development, as the estimation of the
probability of floods and earthquakes has been on the focus of researchers and engineers
for a long time. The estimation of the conditional probability of the response of a system
for a certain loading scenario can be done with the help of reliability theory, which is based
on a powerful mathematical framework that has been used successfully on the field of
structural analysis. The estimation of consequences (in terms of loss of lives and impacts
on economy), for a certain response of the dam-reservoir system (partial or total failure for
a given loading scenario), represents a much more recent landmark in dam safety
engineering. However, the development of this issue during the last decades of the past
century has been remarkable.

Following the distinction between the three components of risk aforementioned, the
problem proposed herein deals with the second of them: conditional probability of the
response of a dam-reservoir system for a certain loading scenario. The conditional
probability can be assessed by means of three different methods, namely historical
references, probability elicitation, and reliability analysis. Probability estimation of the
response of complex systems such as dams is an issue subjected to much controversy and
discussion by dam engineering community.

Reliability techniques have been used in structural analysis while its application to other
civil engineering fields, such as dam engineering, has been scarce, due to a variety of
reasons such as the prototype character of each dam, uncertainties associated with the
foundation, presence of water flow, and others. The complexity of the dam-reservoir
behaviour, with several phenomena of different nature interacting simultaneously, has been
tackled by following strong simplifications in the models of analysis together with the
adoption of large safety margins on loads and resistances. On the other hand, the
development of advanced numerical models (finite element and finite difference based
methods) and the growing calculation power of computers, allow the use of complex
mathematical models in the analysis of dam safety problems.



2.- AIM OF THE THEME

The objective is to obtain relationships between water levels, factors of safety and
probabilities of failure for a gravity dam. This can be done using behaviour models for the
dam-foundation system together with reliability techniques that allow for uncertainties in
the parameters, using random variables.

For the purpose of comparison and evaluation of advances in this field, the dam proposed
is taken from the Theme 2 of the 1999 ICOLD Benchmark.

The proposed exercise aims at analysing the dam with a 2D model. The model should be
chosen by participants and it can be a limit equilibrium model or a deformable body model.
The factor of safety against sliding is then calculated for several water levels.

Following this step, participants should estimate the probability of failure for the sliding
failure mode using at least one Level 2 reliability method and a Level 3 Monte Carlo
simulation method. On the Appendix, some useful information on reliability techniques
and how they can be applied to this problem can be found.

The charts provided by different teams will be compared and analysed by formulators.



3.- FORMULATION OF THE THEME
3.1.- DATA

3.1.1.- GEOMETRY OF THE DAM
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Figure 1: Dam geometry

The full geometry including the foundation is shown in the next figure. The foundation has
a rectangular shape with height of 80 m and a total length of 300 m (120 m upstream, 60 m
under de dam, 120 m downstream).

Figure 2: Dam and foundation geometry



3.1.2.- MATERIAL PROPERTIES

Data on material properties for dam and foundation are given in Table 1.

Table 1.- Data for dam and foundation materials

Material parameters Dam Foundation
Young’s modulus (MPa) 24000 41000
Poisson’s ratio 0.15 0.10
Mass density (kg/m?) 2400 2700
Compressive strength (MPa) 24 40
Tensile strength (MPa) 1.5 2.6
Strain at peak compressive strength 0.0022 0.0025
Strain at end of compressive softening curve 0.10 0.15
Fracture energy (N/m) 150 200

Data for material properties for dam-foundation interface are given in Table 2.

Table 2.- Data for dam-foundation interface

Parameter Value

Shear stiffness (MPa/mm) 20
Tensile strength (MPa) 0.0
Friction angle (°) See Table 3
Cohesion (MPa) See Table 3
Dilatancy angle (°) 0
Softening modulus (MPa/mm) -0.7

Friction angle and cohesion at the dam-foundation interface are considered as random
variables. Available data in the form of fifteen pairs of values are given in Table 3.

Table 3.- Data for friction and cohesion at the interface

Sample Friction angle Cohesion
©) (MPa)
1 45 0.5
2 37 0.3
3 46 0.3
4 45 0.7
5 49 0.8
6 53 0.2
7 54 0.6
8 45 0.0
9 49 0.1
10 60 0.2
11 63 0.2
12 62 0.4
13 60 0.7
14 56 0.1
15 62 0.4




3.1.3.- LOADING

The considered loadings are self-weight, hydraulic pressure acting on the upstream face of
the dam and uplift acting on the base of the dam. Development of a crack at the interface
should be addressed by participants and uplift pressure should be evaluated accordingly.

Two cases of drain effectiveness are considered, with discrete probabilities associated:

e Case A: Drains effective (probability of 0.90)
e Case B: Drains not effective (probability of 0.10)

drain
axis

I crack tip
v — v

P=pgh I 0.2P PI

Case A. Drains effective Case B. Drains ineffective

crack tip




3.2.- PROBLEM

3.2.1.- PART 1

Participants should generate at least one model of behaviour for the dam and calculate the
factor of safety against sliding for the 5 water levels given in Table 4.

Table 4. Results of Part 1

Water Level
(in m over dam-foundation contact plane)

Factor of Safety
(for sliding failure mode)

75

78

80

82

85

3.22.-PART 2

Estimate the probability of failure using Level 2 reliability methods. At least results with the
First Order Second Moment (FOSM) Taylor’s series approximation should be provided.

Table 5. Results of Part 2

Water Level
(in m over dam-foundation
contact plane)

Probability of failure
(for Level 2
FOSM Taylor Method)

Probability of failure
(for other Level 2
Method)

75

78

80

82

85

3.23.- PART 3

Estimate the probability of failure using the Level 3 reliability method Monte Catlo

simulation.

Table 6. Results of Part 3

Water Level
(in m over dam-foundation contact plane)

Probability of failure
(for Level 3
Monte Carlo simulation)

75

78

80

82

85
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1.- INTRODUCTION.

The objective is to show different methods of analysis to estimate the conditional probability of
failure by sliding along the dam-foundation contact on a concrete gravity dam. These methods
can be classified as Level 1, Level 2 and Level 3 methods.

If our project variables (X1,X,,...,X,) are considered as random variables, it is possible to define
the strength function r(xy,x»,...,X,) and the load function s(x;, Xa,...,x,) and write the limit state
equation as follows:

* r ) seeey
g (xl,xz,...,xn)=g(x1,x2,...,xn)—1=M—le (Eq. 1)

B

According to this, the failure domain in the n-dimensional space is defined as all the possible
values (X1,X,...,X,) that verify the condition:

g*(xl,xz,...,xn)SO (Eq.2)
and the safety domain is defined as all possible values (xy,X»,...,X,) that verify the condition:
g*(xl,xz,...,xn)>0 (Eq. 3)

According to the concept of the probability density function, the probability of a single n-
dimensional point (x;,X,...,X,) to be in the failure domain defined by g*(x,Xs,...,Xn), 18
calculated as the integral over the failure domain of the joint probability density function of all
random variables:

Pf[g*(XI,X2,---1Xn)SO]: .[fXIvXZ .... X, (Xl,X2,...,Xn)dX1dX2...an (Eq 4)

g¥(X],Xg Xy )0

As long as the joint probability density function and the integration domain are defined with
precision, and the integral can be calculated, Equation (4) provides a value for probability that is
mathematically exact.

The methods for failure probability estimation can be grouped in different levels (Minguez [1]):

Level 1: Method of safety factors. Does not provide probability of failure. Uncertainty is
measured by arbitrary factors.

Level 2: Second Moment Methods. The probability of failure can be obtained under some
assumptions. Only the first two moments (mean and standard deviation) of the joint
probability density function fx,x2,...,xa(X1,X2,...,Xn) are used. Eventually, also the failure
domain g*(xy,Xs,...,X,) 1S approximated.

Level 3: Exact Methods. These methods provide the probability of failure, as they work
with all the information of the joint probability density function. Integration is carried out
by means of specific methods.
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Table 1. Levels of reliability analysis.

LEVEL Method_ of I?ropabl_llty Limit state Treatme_nt of Output
calculation distributions equations uncertainty
Code calibration with
Level 1 level 2 or level 3 Not used Linear Arbitrary factors Coefficients
methods
Normal Linear or aprox. | Can be included as | Probability of
Level 2 Second order algebra distributions only Linear normal distribution failure
Transformations Equlyalp nt pormal Lmear. Or aprox. Can be included
distributions Linear
Level 3 Pro?ablhty of
. ailure
Numerical
integration and Any distribution Any form Random variables
simulation

2.- CASE STUDY.

Dam geometry is depicted in Figure 1 and in Table 2.

tz
1
H
B*
Figure 1. Dam geometry.
Table 2. Dam geometry.
Geometry Values
Height (m) 100
Base width (m) 75
Upstream slope Vertical
Downstream slope (H:V) 0.75

Properties of concrete and rock materials are given in Table 3.
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Table 3. Concrete and rock properties.

Material properties Concrete Rock
Mass density (kg/m’) 2300 2600
Compressive strength (Pa) 200 x 10 300 x 10°

Tensile strength (Pa) 20% 10° 25 x 10°

Properties of the dam-foundation contact are given in Table 4.

Table 4. Properties of the dam-foundation contact.

Material properties Values

Peak Cohesion (Pa) 5x10°
Residual Cohesion (Pa) 0
Peak Friction Angle (°) 45
Residual Friction Angle (°) 35

Tensile strength (Pa) 4x10°

Data of water pressures are given in Table 5.

Table 5. Data of water pressures.

Data of water pressures Values
Density of water, pw (kg/m’) 1000
Water level upstream, h (m) 90
Water level downstream (m) 0
Drainage system efficiency 0

Gravity acceleration is taken as g = 10 m/s”.

3.- MATHEMATICAL MODEL OF ANALYSIS.

Sliding stability can be analysed by means of a simple two-dimensional limit equilibrium
model.

Hydrostatic load, S (N/m), is the driving force and can be evaluated by (5).

S= ;pwghz (Eq. 5)

Shear strength, R(N/m) is calculated with (6).
R=(N-U)tgp+Bxc (Eq. 6)

N (N/m) is the sum of vertical forces acting on the dam-foundation contact surface.
U (N/m) is the uplift.

B (m’/m) is the area in compression in the dam-foundation contact.

¢ (°) is the friction angle in the contact.

¢ (Pa) is the cohesion in the contact.
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4-1LEVEL 1 METHODS. GLOBAL SAFETY FACTOR

4.1.- THEORETICAL BASIS.

This is the classical approach in structural safety assessment. All the variables of a certain
problem (geometry, material properties, loads,...) form a vector (X;,X5,...,X,) in a n-dimensional
space, and if we define a strength function r(xy,x,,...,X,) and a loading function s(x;,Xy,...,Xy), it is
possible to derive a function g(x;,Xa,...,X,) as:

(X[, X5, Xy )
= Eq. 7
S(X1,X 9,00y Xy ) (Eq. 7)

g(Xl » X2 :"-aXn)
Any point (X;,Xz,...,Xy) in the n-dimensional space is in the safety domain if:
(X, X, X, ) >1 (Eq. 8)
On the other hand, it is in the failure domain if:

(X, X, X, ) <1 (Eq.9)

The frontier between these two domains, or limit state region, is defined by the n-dimensional
hyper surface defined by:

g(X17X27"'7Xn):1 (Eq- 10)

SAFETY DOMAIN
g(x1,x)>1

LIMIT CURVE
g(xi,x)=1

<

Variable X%

FAILURE DOMAIN
g(x1,x)<1

Variable X1

Figure 2: Safety and failure domains and limit state in a two-dimensional case.

The global safety factor, F (F>1), is defined as:

2(X,, Xy, X, ) —F>0 (Eq. 11)
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Or, in the most common expression:

(X1, X550 Xy )

>F Eqg. 12
S(X1,X9,00Xp) (Eq. 12)

This method is used in common practice with constant values for the variables (X,X,..., X,),
so-called representative values.

LIMIT CURVE SAFETY DOMAIN
g x)=1 gxi,x)>1
X
D
)
8
1)
<
> SAFETY
FACTOR

FAILURE DOMAIN
glxix)<1

Variable X1

Figure 3. Safety margin expressed in terms of safety factor.

4.2.- APPLICATION TO THE CASE STUDY.

Evaluating the forces acting on the dam:

S= %1000x10><902 =4.05%x10" (N/m) (Eq. 13)
R =((0.5x75x100 x 2300 x 10) —
Eq. 14
((0.5x 75 x 90 x 1000 x 10)tg45 + (75 x 5x10%))) =9.00 x 10" (N/m) (Fq. 19)
And the global safety factor obtained is:
R 9.00x10’
=—="""""_=222 Eq. 15
S  4.05x10’ (Fa- 1)

5.-LEVEL 1 METHODS. PARTIAL SAFETY FACTORS

5.1.- THEORETICAL BASIS.

In this methodology different safety factors are associated with different variables. This method
is common practice in the reinforced concrete and steel structures analysis.

s iPresas
[ L]

WWW.ipresas.upv.es 9/30



Assessment of the sliding probability of failure of a concrete gravity dam
2nd International week on risk analysis
as applied to dam safety and dam security 26-29" February 2008 Valencia. Spain.

Two groups of coefficients are defined, a group v; (y; <1) associated with strength variables, R,
and a group A (A; > 1) associated to loadings, S;, so (Eq. 12) can be re-written as:

2 1R, >27w5j (Eq. 16)

This methodology allows “weighting” of the different variables depending upon the
uncertainties associated to the representative values adopted. Coefficients associated to strength
variables decrease their values with respect to their representative ones and coefficients
associated to loading variables increase their values with respect to their representative values.

5.2.- APPLICATION TO THE CASE STUDY.

It is possible to evaluate the sliding safety of a gravity dam with partial safety factors, as the
Spanish recommendations for dam calculation state (Technical Guide n°2 Criteria for dam
project).

Partial safety factors are assigned to shear strengths (friction and cohesion in the dam-
foundation contact) The values for these factors are different depending upon the kind of
evaluation being carried out: normal, abnormal or extreme. They also vary depending on the
dam classification.

In this case assumption of an abnormal situation is reasonable, as the drainage system is
supposed to be ineffective. Dam classification according to Spanish standards is A.

Friction strength, Ry, cohesion strength, R,, and loading, S;, can be calculated:

R, =(A- p.g —U)tgg = (3750 x 2300 x 10 — 3.375 x 107 )tg45 =5.25x 10" N/m (Eq. 17)
R,=B-c=75x5.00x10° =3.75x10" N/m (Eq. 18)
S, =0.5-p,g-h*=0.5x1000x10x90* =4.05¢7 N/m (Eq. 19)

and equation (16) can be written as:
ViR, +7,R, > A8, (Eq. 20)

According to Spanish recommendations, partial safety factors for abnormal situation and A
category dam are:

Friction, 1 = 1/1.2 = 0.833
Cohesion, » =1/4 =0.25

Cohesion decrease is larger than friction decrease. Recommendations do not assign any
loading increase, so A = 1. Substituting in (20) the sliding safety can be checked::

0.833%5.25x107 +0.25x3.75x107 =5.31x10” > 1x4.05x10’ (Eq. 21)
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6.- LEVEL 2 METHODS. THEORETICAL BASIS.

Level 2 methods make a linear (first order) approximation of the function g*(xy,xa,...,X,). In
addition, only the first two moments (second moment) of the joint probability density function
distribution are considered, so these methods are called FOSM Methods (First Order Second
Moment).

The typical output of these methods is the reliability index, 3, which is defined as the number of
standard deviations between the expected value of the function g*(x;,X,,...,X,) and the limit state
value defined as g*(xy,Xs,...,x,)=0. This value gives us a relative measure of reliability (distance
between the most probable value and the failure domain, in the sense that the larger the value of
B, the safer the structure will be, but it does not tells us anything about the probability of failure
by itself.

_ Elg*]- (2 *)uno _ Elg*]-0 _ E[g*]

p

(Eq. 22)
g* g g

As X, X,,...,X, are random variables, g*(xi,Xs,...,x,) is a random variable with a certain
probability distribution, usually unknown. To get an estimate of the probability of failure, and
hypothesis on the shape of this distribution is to be done. With the shape of the probability
distribution and its first two moments, both the reliability index and the probability of failure
can be obtained.

There are different techniques to deal with the problem:
e Taylor’s Series Method

e Rosenblueth’s Point Estimate Method
e Hasofer & Lind Method

/-LEVEL 2 METHODS. FOSM - TAYLOR’S SERIES.

7.1.- THEORETICAL BASIS.

The function g*(xi,X,...,X;) must be linear to obtain the first two moments of the probability
distribution of g*(xy,Xa,...,X,) from the first two moments of the probability distributions of the
random variables X;,X,,...,X,:

g*(xl,xz,...,xn)zao +a;X; +a,Xy +..+a,X, (Eq. 23)

The first moment of the probability distribution of g*, assuming that the random variables are
correlated can be calculated as:

1 org*
R

where ox; is the standard deviation of the random variable X; and pxixj is the correlation
coefficient between random variables X; y X;.
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Being a first order approximation, second order derivatives can be ignored, so the final
expression is the same for correlated and independent random variables:

Elg*]=g*(ElX, ] E[X ... B[X, ) (Eq. 25)

So the expected value of g* is obtained evaluating the function in the n-dimensional point
corresponding to the expected values of the random variables. The variance of the probability
distribution of g*, assuming correlated random variables, is calculated as:

2
og*) 2 og* og*
Vel T (ax j 22{@){ ax, PR X (Eq. 26

where o%y; is the variance of the random variable X.

If the random variables are independent, equation (26) can be written as:

2
a *
Var[g*]zz (;{] G;i (Eq. 27)

First order derivatives can be obtained straightforward if g* is a linear function. If it is not, first
order derivatives are approximated by the first order elements of the Taylor’s series expansion
of g* about the expected values. The partial derivatives are calculated numerically using a very
small increment (positive and negative) centred on the expected value. Following the USACE
practice, a large increment of one standard deviation will be used, in order to capture some of
the behaviour of the nonlinear functions.

og * N g*(E[Xi]JFUxi)_g*(E[Xi]_O'x,) g*(E[Xi]"'O-X,)_g*(E[Xi]_UXV)

oX, (Xi+oy )Xoy ) 20, - (Fa29
And the square of the first order derivative can be estimated by:
og* ? 1 g*(E[Xi]+GXi)_g*(E[Xi]_GXi) ?
X, ~ 2 5 (Eq. 29)
i X;
Substituting (29) in (27):
2
*\E[X;|+0ox )J-g*|E[X;]|-0x.
Var[g*]:z (g ( [ ] Gx,)zg ( [ ] GXI)J (Eq. 30)
1

With this method a number of 2n+1 evaluations of the performance function g* is needed, being
n the number of random variables considered.
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7.2.- APPLICATION TO THE CASE STUDY.

In this example only two variables are considered as random variables: friction angle and
cohesion along the dam-foundation contact. All the other variables are considered as constant
variables with their respective constant values. Friction angle is supposed to be defined by a
normal probability function, with mean of 45° and standard deviation of 6.75°. Cohesion is
normally distributed with mean of 5.00x10° N/m* and standard deviation of 1.25x10° N/mZ.
Both variables are independent.

The performance function g* is defined as:

g*=£—l (Eq. 31)

Where r is the shear strength function and s is the loading function. According to the values of
the case study:

r=(A-p,g-U)gg+B-c= (3750 x 2300 x 10 — 3.375 x 10" )tgg + 75 x C

(Eq. 32)
r=525x10" xtgp+75x¢
And the loading function:
$=0.5-p,0-h*=0.5x1000x10 x90*> =4.05x 10’ N/m (Eq. 33)
So the performance function can be written as:
5.25x107 xtgg+75%c¢
0*(p.c)= LANELSS (Eq. 34)

4.05x10’
The tge introduces a non linearity in the function. First moment of g*, according to (25), is:

5.25x107 xtg45+75%x5.00x10°
4.05%10’

E[g*]= -1=1.222222 (Eq. 35)

And 4 more evaluations of g* are needed:

5.25x107 xtg51.75+75%5.00x 10°

9*(45+6.75,5.00e5) = ~1=1.570270
4.05e7
7 5
g*(45—6.75,5.00e5): 5.25x10" xtg38.25+75%x5.00x10 1 =0.947844
4.057
5.25x107 xtg45+75x6.25x10° (Eq. 36)
g *(45,5.00e5+1.25€5)= > g : —1=1.453704
4.057
7 5
g*(45,5.00e5—-1.25¢5) = 2210 Xti“g;? 3750071 _ .990741
.05e
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And applying (30):

2 2
Var[g *|=0.096854 + 0.053584 = 0.150438

1 (1.570270 - 0.947844)° (1.453704—0.990741)’
Var[g ]z + (Eq. 37)

Once the first two moments are known, the reliability index can be calculated using equation
(22):

Ele*]- ()i _Elg*]-0 _E[g*] 1222222

B= = = =3.151174 Eq. 38
Gg* Gg* Gg* ’\/0150437 ( q )
& g=1.22
LS
g >
2 g*(p(p,m+cc):1.45
[3) 0*(u,~oc,,C)=0.95
= .= P 9*(u+ 0,y C)=1.57
© 8N
§ %QOQ’ Linear approx.
8 in (“1{»“0)

O
Q/XQ 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

Friction angle, ¢ ©)

Figure 4: Taylor’s series method.
Contribution of each random variable to overall variance is:

Contribution of ¢: (0.096854/0.150438) — 64.38%
Contribution of ¢: (0.053584/0.150438) — 35.62%

To obtain a probability of failure, we have to make an assumption on how the performance
function g* is distributed. If the hypothesis is that g* is normally distributed, then:

g%~ N(ug; 0°g+) ~N(1.222222; 0.150438)

and the probability of failure P;[g*<0] can be calculated:

_“g*

Gg*

Pf[g*go]:FN(o)zq{o j=<D(—[3)=@(—3.151174)=0.000813 (Eq. 39)

Note that this is a CONDITIONAL probability for a certain water level upstream and certain
drainage system efficiency.
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8.- LEVEL 2 METHODS. POINT ESTIMATE METHOD.

8.1.- THEORETICAL BASIS.

The point estimated method determine the first two moments of the performance function g* by
the discretization of the probability distributions of the random variables X;,X,,...,X,. This
discretization is made in a few points for each random variable (two or three points), where
mass probability is concentrated in such a fashion that the sum of the probabilities assigned to
each point is 1 for each random variable (Rosenblueth [2] y Harr [3]). In the more general
approximation, the method determines the third moment of the distributions, which allows
analysis with skewed (asymmetrical) distributions. Random variables can be independent or
correlated.

With this method there is no need to evaluate partial derivatives of the performance function g*.
A disadvantage of the method is that the performance function has to be evaluated 2" times,
being n the number of random variables. If n is large, the method requires a considerable
computational effort, above all if g* evaluation is not straightforward.

The method concentrates the mass probability of the random variable X; in two points, X+ ¥ X;.,
each of them with a mass probability of P;; and P;.. Points are centred about the mean value, pix;,
at a distance of d;, and d;. times the standard deviationcy; , respectively.

Pi+ +Pi— :1
Xiy =My, +dj, -0x, (Eq. 40)
Xi- =py, +d;_-ox

Coefficients d;: y d;. are determined using the skew coefficient, y;, of the random variable X;:

2
_Yi Yi

di+—2+ 1+(2j (Eq. 41)

di_=d;, —v;

Probabilities are assigned to each point according to:

d;_
i+ -,
di+ + d17 (Eq 42)
P. =1-P

i i+

In figures 5 and 6 the discretization of a random variable is shown. A number of 2" values of
discrete probabilities should be obtained by combination of the point probabilities of each
random variable with the other random variable’s probabilities. These probabilities are
P(51,52,...,5n), where 81 is the Sigl’l (+ 0 —).

Values of these probabilities are calculated as:

n n—1 n
Ps162,..6n) = [ Pisi + Z[ ZSiSjaijJ (Eq. 43)
i<l

i=1\ j=i+1

s iPresas
[ L]

" WWWw.ipresas.upv.es 15/30



Assessment of the sliding probability of failure of a concrete gravity dam
2nd International week on risk analysis
as applied to dam safety and dam security 26-29" February 2008 Valencia. Spain.

Where the coefficients a; are calculated as:

i (Eq. 44)
Being pj; the correlation coefficient between random variables X; y X;.
fdp(x)

2
E
®
o]
2
o

p-dic H ptdisc Variable Xi

Figure 5: Probability density function of a random variable X;.
F)i— \ / I:)i+
p—disc 0 ptdivc Variable Xi

Figure 6: Point Estimate Method discretization of probability of a random variable.
The performance function g* has to be evaluated 2" times, corresponding to the 2" possible

combinations of discrete probability points Pi,s2,...,6n), Obtaining g*si,52,...,6n). Once this is
accomplished, the moment of m order of the probability distribution of g* is determined by:

E[g*m]%ZP(SL& ..... Bn)g*ng ..... Sn) (Eq- 45)
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So for the first moment:

E[g *] = Z P(s1,52,..,5n)8 ™ (51,52....5n) (Eq. 46)

E[g *2 ]= > Pls1,62,..,6n)8 *(281,82 on) (Eq. 47)

.....

The variance of g* can be calculated:
Varlg = Ellg* e |2 Elg |-l (Eq. 48)

So it is possible to determine the mean and the variance of the probability distribution of g* but
the shape of the distribution is not known. If what we want is a probability of failure, again a
hypothesis of how g* is distributed is to be done.

The method loses precision with the increasing nonlinearity of g* and if moments over the
second are to be obtained. It does not provide a measure of the contribution of each random
variable to the overall variance, so it is not an adequate method to filter the most relevant
random variables.

8.2.- APPLICATION TO THE CASE STUDY.

First step is to make the discretization of probability distributions of the random variables.
Variables ¢ and c are normally distributed (symmetrical), so y, = % = 0 (null skewness).
Applying (41) we can obtain d,» = d, = 1 and d. = d.. = 1, and the points where mass
probabilities will concentrate are, using (40):

¢ =uy+0,=45+6.75=51.75
¢ =uy;—0,=45-6.75=38.25

Eq. 49
C, = g, + 0, =5.00x10° +1.25x10° =6.25x 10° (. 49)
C.=p, —0,=500x10° -1.25%x10° =3.75x10°
And mass probability values for each random variable are, using (42):
d,_
P, =— > —= L _os
do, +dy-  1+1
P, =1-P,, =1-0.5=0.5
*- o* (Eq. 50)

— d07 — 1 —
Cody, +d 141
=1-P, =1-05=0.5

0.5

P

C

As friction and cohesion are supposed to be independent variables, correlation coefficient is
null (o, = 0), and applying (44), a,. = 0.
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So the calculation of the 2" = 2% = 4 probabilities given in (43) are as follows:

.P,, =0.5x0.5=0.25

(p+.c+) = Pos
Plor.c-) =Pgs -P_ =0.5x0.5=0.25 (Eq. 51)
Po-c+) =Py - Pey =0.5%x0.5=0.25 '
Plo-c-) =Py -P._=0.5x0.5=0.25

The evaluation of the performance function g* in the 2" = 22 = 4 points where probabilities
have been calculated leads to:

7 5
¢+’ + =g*(5175 625><105) 5.25x10 xtg51.75+775><6.25><10 _1=1.801751
4.05x10
7 5
¢+,C :g*(Sl 75.3. 75><105): 5.25x%10 xthl.75+ZSx3.75x10 121338788
4.05x10 (Eq. 52)
7 5 :
¢_, + :g*(3825 625><105): 5.25x10 ><tg38.25+35><6.25><10 121179325
4.05x10
7 5
)= g*(38.25,3.7510° )= 5.25x10 ><tg38.25+775><3.75><10 1—0716362
4.05x10
So the first moment can be determined with equation (46):
E[g*]z0.25><1.801751+0.25><1.338788+0.25><1.179325+O.25><0.716362 Ea. 53
E[g *]=1.259057 (Ea.53)
And the second moment with equation (47):
Elg*2|= 0.25x1.8017512 +0.25x1.338788% +0.25x1.1793252 +0.25x 0.7163622 (Eq. 54)
qg.
E[g*2]=1.735661
And the variance of g* is calculated with equation (48):
Var[g *|= E[g *2]— Mox =1.735661-1.259057° = 0.150437 (Eq. 55)

To obtain a probability of failure, we have to make an assumption on how the performance
function g* is distributed. If the hypothesis is that g* is normally distributed, then:

g%~ N(g; %) ~N(1.259057; 0.150437)

and the probability of failure P{[g*<0] can be calculated:

0— s 1.259057
P;[e*<0|=F(0)=® £ = =2 3.246142) = 0.000585
rle*<0]=Fy(0) [ o J ( S 150437 j (- )= (Eq. 56)

Note that the probability value obtained with PEM is slightly less than the value estimated with
Taylor’s series and that variance is the same in both cases.
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@xdb g*=1.22
N '\/QQ
S . B
Z 9*(uy* G e toc)=1.80
£ g*(Pl«p'G(paHC"'Gc):l.lS P(_:'L‘P-l_):% o5 c
° P(+,+)=0.25 ) .
c o 7
% Q/XQ g*(“(p+clp’ HC_GC):]--34
g P(+,+)=0.25
Q
O
Q/xQQ 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90
S
O
Friction angle, ¢ ©)

Figure 7: Point Estimate Method.

9.- LEVEL 2 METHODS. HASOFER-LIND.

9.1.- THEORETICAL BASIS.

One of the problems of the Taylor’s series method and Point Estimate Method is the lack of
invariance of the reliability indexes obtained, as their value depend upon the formulation of the
performance function g*. To avoid this, Hasofer and Lind [4] developed an invariant definition
of the reliability index.

Let X be the vector of the random variables (X;,X,....,X,), normally distributed, ux the vector of
the mean values, ox the variance-covariance matrix and g*y the performance function, supposed
to be linear. The reliability index proposed by Hasofer and Lind is defined by:

B =Min- (= gz, ) o5 (x = 1 ) (Eq. 57)
Subject to:

gx(x)=0 (Eq. 58)

The point of the n-dimensional space that verifies the condition is the “design-point”, which lies
on the limit state region between the safety and the failure domains. Of all of the possible point
lying on the limit state region, the design-point is the most likely. That is to say that of all
possible points on the limit state region, at the design point, the joint probability density
function fxi,x2,..,xn Of all the random variables reaches the highest value.

If random variables are independent, then the variance-covariance matrix is a diagonal matrix,

where values lying on the diagonal are the variances of the random values, so the problem
defined by (57) y (58) can be re-written as:

(Eq. 59)
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Subject to:

%

gX(X]’XZ”Xn)ZO (Eq 60)
To apply this method is a common practice to transform normal correlated random variables
(X1,Xs,...,X,) in standard normal uncorrelated random variables with null mean and standard
deviation being unity (Z,Z,...,Z,). To keep the metric in both spaces an orthogonal
transformation should be done. The first step is to transform initial normal correlated random
variables in normal uncorrelated random variables (U;,U,,...,U,). This is accomplished by a
transformation matrix B:

U=BX (Eq. 61)

As the variance-covariance matrix is symmetric and defined positive, it can be expressed as:

ox=LL" (Eq. 62)

Where L is a triangular matrix which can be obtained from ox. The transformation matrix is
determined as:

B=L" (Eq. 63)
It can be proved that oy = | (Minguez [1]).
Variable standardization is done by:
Z=U-py =B(X-py) (Eq. 64)

In the transformed space, the formulation of the problem is as follows:

L= Mzin«/sz (Eq. 65)
Subject to:
g7(2)=0 (Eq. 66)

In the transformed space B is the minimum distance between the origin of coordinates and the
failure domain. Vector along which the distance B is defined in the transformed space has the
director cosines determined by:

ogy
_ 0z
e (Eq. 67)
ogy; 0gz
0z oz

This director cosines represent the sensitivity of the performance function g,* to changes in the
values of the variable z;.

To solve the minimization problem different algorithms may be used (Newton, gradient, etc.).
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As in previous methods, probability is derived from the reliability index making an assumption
on how the performance function is distributed. If random variables are normally distributed
and the performance function is linear, then it is normally distributed too.

9.2.- APPLICATION TO THE CASE STUDY.

The calculation of the reliability index with the Hasofer-Lind method is expressed by:

_ 2 2 2 2
5 = Min P— 1y 4 _ vin (¢—45) +(c—5.00e5] (Eq. 68)
() oy o, (¢c) |\ 6.75 1.25e5
Subject to:
* 5.25e¢7Txtgp +75%¢
g (9,0) 4.0567 (Eq. 69)

The numerical problem can be solved with different algorithms, as Newton’s or gradient
method. In this particular case the tool ““Solver” implemented in the commercial spreadsheet
Excel© has been used to solve the problem.

Initial values are ¢ = ¢ = 0. Reliability index obtained is = 3.656443, for values at the design
point of ¢ = 28.8987° and ¢ = 1.54e5 N/m°.

Assuming that g* is normally distributed, sliding probability of failure is determined:
P;[g* < 0]= Fy(0) = (- 3.656443) = 0.000128 (Eq. 70)

This value of probability is less than the values provided by previous methods, and it is a more
accurate one..

1.00E+06
g*=1.22
. N Gy Oo¢
Linear approxinfation
on the design point (g c)
Oc
5.00E+05 ¢
Oc
0.00E+00 B N S —

0 5 10 1520 25 30 35 40 45 50 55 60 65 70 75 80 85 90

Figure 8: Hasofer-Lind method.
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10.- LEVEL 3 METHODS. SIMULATION.

10.1.- THEORETICAL BASIS.

Level 3 methods provide a more accurate evaluation of the probability of failure, as they
consider all the information of the probability density function and not only the first two
moments. The formulation of the problem is that of equation (4).

To evaluate the integral we can resort to two groups of methods.
In the first group we can find methods based on the transformation of the random variables in a
fashion similar to FOSM methods. FORM (First Order Reliability Methods) y SORM (Second
Order Reliability Methods) are methods of this kind.
In the second group we can find methods that try to calculate directly the integral defined by
equation (4). We have on one side the numerical methods of integration (Simpson, Gauss-
Laguerre, Gauss-Hermite, etc.) and on the other side the simulation methods (Monte Carlo
Methods).
With the simulation methods we generate N sets of values for the random variables according to
their probability distributions and possible correlations:

A AN AN AN A

X(i)=| X1,X5,00Xy | 31=1,..,N (Eq. 71)

(i)

Generation of these values is accomplished by statistical techniques as the inverse transform

method, the composition method, the acceptance-rejection method, and others (Rubinstein [5]).

The performance function is evaluated for each one of these sets of values, and the number of
failures, m, (when g*<0) is calculated. The probability of failure can be then estimated by:

N A N
m(g *(xl,xz,...,an SOJ

N

(Eq. 72)

A
Prato =Py

This method of simulation is the normal Monte Carlo method (“Hit or Miss Monte Carlo
Method”). These simulation methods are deemed “exact methods” in the sense that they provide
the exact value of the probability of failure when N — oo. For lower values of N, what we get is

an approximation of the value of the integral (4). The estimator of the probability of failure
shows a mean and a variance given by:

E|:Pf:|:Pf
. (Eq. 73)
2
65, =—P:(1-P
L= Pili-m)

The accuracy of the estimation is measured by inverse of the standard deviation of the estimator,
which is proportional to N°°. So we can double the precision in the approximation of the value
of the probability of failure by multiplying by four the number of experiments (USACE [6]).
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Probabilities of failure in civil engineering in general and in dam engineering in particular are
very low, being of an order of 1 out of 10000 and less. So to capture this order of magnitude
with simulation, a large number of experiments are needed, as each experiment is a Bernouilli
process, with an individual probability of failure equal to the sought probability of failure.

From the early days of the development of the method, researchers have explored techniques
with the aim of increasing the efficiency of the method (obtain low variances with less
experiments). Between these techniques to reduce the variance we can find the “importance
sampling” (Clark [7]), the “correlated sampling” (Cochran [8]), and the “stratified sampling”,
being one of its variants the “Latin Hypercube Sampling” (Iman et al. [9, 10], McKay et al [11]
y Startzman el al [12]).

Latin hypercube divides the probability distribution in different intervals equally distributed
along the Y axis, corresponding to the cumulative probability. During the sampling process an
identical number of experiments are generated on each of the intervals, so all the probability
distribution space is swept, even those areas of very low probability that would not have been
sampled unless a very large number of experiments had been done.

Monte Carlo sampling

1.0
0.9
0.8
0.7
0.6
0.

Random numbers
between Oy 1

0.4

0.3

Sampled
Values

Cumulative Probability

0.2
0.1

0.0 L
Minimum Maximum

value Random variable, X value

Figure 9: Monte Carlo sampling.

So it is very useful to estimate the order of magnitude of the probability of failure previously to
the programming of a Monte Carlo to optimize the simulation.

It is a common practice to use Monte Carlo techniques to make inferences of the probability
distribution of the performance function and of the probability distribution of the safety factor,
which are closely related.

The N evaluations of the performance function form a sample of a random variable, so it is
possible to make estimations on important parameters (mean, standard deviation, skewness,
etc.) that help to understand how the performance function is distributed in terms of probability.
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Latin Hypercube sampling

1.0

—

0.9
0.8
0.7

0.6
0.5

0.4
0.3
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0.0
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Figure 10: Latin Hypercube sampling.

Once the probability distribution function Fg«, of the performance function is derived, the
probability of failure can be determined straightforward by:

Py =P[g*<0]=F - (0) (Eq. 74)

An apparent advantage of this procedure is that, once F,« is known, which can be done with a
relative low number of experiments, N, the whole probability domain is fully determined, so
probability estimations can be done at any level, even in the tails of the distributions. The
problem that immediately arises is that the estimation made on the probability distribution
function can be (and it usually is) inaccurate in the tails of the distribution, which are the key
areas to estimate the probability of failure

10.2.- APPLICATION TO THE CASE STUDY

The failure domain g*=0 is defined by equation (75):
9°(4,c)=a, +a, xtgp+a2xc=—1+1.30tgg+1.85x10° xc =0 (Eq. 75)

We consider two random variables: friction angle and cohesion, being both normally
distributed.

By Monte Carlo techniques different sets of experiments are generated. The number of
experiments differs for each set: N =100, 1000, 10000, 100000 y 1000000. The sampling is
done using two technigues: Monte Carlo sampling and Latin Hypercube sampling.

Each pair of sampled values will be used to evaluate the performance function, g*, and so
determination of the number of “failures”, m, where g*< 0 will be calculated. Probability of
failure, Pf, is estimated using equation (72). The variance of the probability obtained is
calculated using equation (73).

Calculations had been carried out with the commercial tool @RISK® implemented in an
Excel® spreadsheet. Results are given in Tables 6 and 7.
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Table 6. Estimation of the probability of failure with Monte Carlo sampling

Direct
Simulations with Monte Carlo sampling Integration
Method
Num_ber of Number of PrOb‘?‘b'“ty . Standard EX"’}C.I
experiments, misses. m of failure, Variance deviation prot_)ablllty of
N ' Pf=m/N failure, Pf
1000 0 0 0 0 1.11 x10™
10000 1 1.00 x10™ 1.00 x10° 1.00 x10™ 1.11 x10™
100000 18 1.80 x10* 1.80 x10™ 4.24 x10” 1.11 x10™
1000000 135 1.35 x10* | 1.35 x10™ 1.16 x10” 1.11 x10™
Table 7. Estimation of the probability of failure with Latin Hypercube sampling
Direct
Simulations with Latin Hypercube Integration
Method
Num_ber of Number of PrOb‘?‘b'“ty . Standard EX"’}C.I
experiments, misses. m of failure, Variance deviation prot_)ablllty of
N ' Pf=m/N failure, Pf
1000 0 0 0 0 1.11 x10™
10000 2| 2.00x10"| 2.00x10° 1.41 x10° 1.11 x10™
100000 10| 1.00x10*| 1.00 x10” 3.16 x10” 1.11 x10*
1000000 116 | 116 x10*| 1.16 x10™ 1.08 x10” 1.11 x10™

It should be noted that the method provides accurate results for a number of experiments of the
same order of magnitude or larger that the probability of failure Latin Hypercube shows
slightly better results for the same number of experiments. In Figure 11 is shown graphically
the calculation of the probability of failure with Monte Carlo sampling for N=10000.

Probability of failure - Monte Carlo sampling

10

C(Nm2

Friction angle (°)
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Figure 11: Probability of failure with Monte Carlo sampling.
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We can try to adjust a probability distribution to the N values of g* sampled. Table 8 shows the
estimators for the mean, variance, standard deviation and skewness, for the sampled values
using Monte Carlo sampling.

Table 8. Estimators for parameters of g*. Monte Carlo sampling

Estimators for parameters of g*. Monte Carlo sampling

Number of . Standard
. Mean Variance L Skewness
experiments, N deviation
1000 1.278071 0.170130 0.412469 0.500776
10000 1.268753 0.170377 0.412768 0.590840
100000 1.260465 0.163442 0.404279 0.482087
1000000 1.260573 0.162467 0.403072 0.474239

Results for values sampled using Latin Hypercube techniques are given in Table 9.

Table 9. Estimators for parameters of g*. Latin Hypercube sampling

Estimators for parameters of g*. Latin Hypercube sampling

Number of . Standard
. Mean Variance .. Skewness
experiments, N deviation
1000 1.260921 0.160528 0.400660 0.372136
10000 1.261030 0.163296 0.404099 0.465118
100000 1.261040 0.163101 0.403858 0.479242
1000000 1.261041 0.162702 0.403364 0.483939

It should be noted that faster convergence is obtained with Latin Hypercube.

Adjustment for two probability distribution functions has been done for the case of N=10000
experiments with both sampling methods (Monte Carlo and Latin Hypercube). This adjustment
has been carried out with @RISK®. Chi-square good-of-fitness test has been carried out as
well.

Two distributions have been tested: normal and lognormal. Lognormal distribution has been
considered as results show certain skewness while normal distribution is symmetric.

The performance function g*, defined by equation (75) can adopt both positive and negative
values.

Normal distribution is defined in the whole domain ( -0 < g* < +o) while Lognormal
distribution is defined in the positive interval (0 < g* < +o ). This is the reason why in the
process of adjustment it is necessary to consider an offset, s, so the adjustment is done for a
transformed function G*, defined as:

G =g'+s ;0<G < (Eq. 76)
Chi-square goodness-of-fit test is based in the estimation of::
k (n; —E;
x2=2( —E) (Eq. 77)
i1 Ej
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where:

k = number of intervals in which is divided the domain of g* (74 in this case)
n; = number of sampled values lying in the i interval.

E; = expected value of the number of values corresponding to the i interval.

The better the fit between a certain probability distribution and the sampled values, the less is
the value of .

One the adjustment is made, the probability of failure can be estimated with equation (74).
Results for adjustments and probabilities of failure with Monte Carlo sampling are given in
Table 10. In Figures 12 and 13 the adjustment is shown graphically. The Lognormal

distribution shows a better fit to sampled values.

Table 10. Fit of probability distributions to g*. Monte Carlo sampling

Values of g* evaluated with Monte Carlo sampling

Number of experiments, N =10000 Probability of
C . failure
Distribution Mean Variance Offset Test P (g*<0)
Normal 1.268753 | 0.170377 0 268.5 1.06 x10°
Lognormal 2.728899 | 0.168983 | -1.460194 84.5 2.07 x107

Normalg<1.26875: 0.41277)
X <=0.590 <=1.948
5.0% 95.0%

1

Figure 12: Fit of a normal distribution to the performance function, g*.

15 2 25 3 35 4 45

Lognorm(2.7289; 0‘411082 Shift=-1.4602
X <=0.649 X <=1.99:
5.0% 95.0%

Figure 13: Fit of a lognormal distribution to the performance function, g*.
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If comparison is made between the probability of failure provided by simulation for N=10000
experiments (1.41x10™) and the probability of failure estimated adjusting a normal distribution
to the sampled values of g* (1.06x107) it is shown that there is an overestimation of the
probability of failure. On the other hand, the probability of failure obtained adjusting a
Lognormal distribution (2.07x107) is underestimated. This illustrates the strong difficulties that
come from fitting distributions to data, if the sought information is in the tails of the

distributions.

Results for adjustments and probabilities of failure with Latin Hypercube sampling are given in
Table 11. In Figures 14 and 15 the adjustment is shown graphically. The Lognormal
distribution shows again a better fit to sampled values.

Table 11. Fit of probability distributions to g*. Latin Hypercube sampling.

Values of g* evaluated with Latin Hypercube sampling

Number of experiments, N =10000 Probability of
C . failure
Distribution Mean Variance Offset Test P (g*<0)
Normal 1.261030 | 0.163296 0 264.8 9.02 x10™
Lognormal 3.047930 | 0.162627 | -1.786922 87.1 3.34 x10”
X <= 0.596 Normal(1.25133<;:ofg§610)
Figure 14: Fit of a normal distribution to the performance function, g*.
- 0646 Lognorm(3.0479; 0.40§<2<7:) fglghg;ljsﬁg
06 ‘ ’
Figure 15: Fit of a lognormal distribution to the performance function, g*.
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If comparison is made between the probability of failure provided by simulation for N=10000
experiments (1.41x10™) and the probability of failure estimated adjusting a normal distribution
to the sampled values of g* (9.02x10™) it is shown that there is an overestimation of the
probability of failure. On the other hand, the probability of failure obtained adjusting a
Lognormal distribution (3.34%10°) is underestimated
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Summary

The aim of Theme C is to promote a probabilistic approach in dam safety assessment, based on
structural reliability methods.

In this paper the sliding failure probability of a concrete dam , under different reservoir level
conditions was estimated. Different methods were applied: FOSM and Hasofer-Lind, as Level 2
methods; Montecarlo, as Level 3 method. The formers are approximated techniques, while the
Level 3 methods are deemed to be exact if the number of samples tends to infinity. For each
loading scenario the safety factor was computed as well.

Several limit-state functions to define the sliding stability (ratio of the driving hydrostatic force
and the shear strength) were considered, assuming the friction angle (or its tangent) and the
cohesion along the dam-foundation interface as uncertain parameters, under both the
hypotheses of effective and ineffective drainage system.

All methods provided quite similar results, in terms of failure probability and reliability index,
when uncertain parameters are modeled with the Normal distribution. Level 3 methods, such
as Montecarlo, capable to model the uncertain parameters with different distributions types
(having in particular the possibility to exclude unrealistic or negative values, such as, e.g., the
Lognormal), provide failure probabilities generally lower and ideally more accurate than Level
2 methods.

' RSE S.p.A., Environment and Sustainable Development Department, Milan, Italy.



1. Geometry and material properties

The 2D block geometry of the concrete gravity dam under examination is depicted in Figure 1.
According to Theme C requirements (Escuder et al [1]), (Hartford & Baecher [2]), a limit
equilibrium model, assuming the block as undeformable, was adopted to evaluate the sliding
failure of the gravity dam. The mass density of the concrete is 2400 kg/m’ and the
experimental values for modeling the uncertain parameters (cohesion and friction angle along
the potential sliding surface) are summarized in Table 1.

Sm

80m 75m

Drain axis

— 10m |4—

a
-

v

60m

Figure 1: Geometric vertical section of the provided gravity dam



Table 1: Angle of friction and cohesion random data

SAMPLE ANGLE OF FRICTION o (°) COHESION c (MPa)
1 45 0.5
2 37 0.3
3 46 0.3
4 45 0.7
5 49 0.8
6 53 0.2
7 54 0.6
8 45 0.0
9 49 0.1
10 60 0.2
11 63 0.2
12 62 0.4
13 60 0.7
14 56 0.1
15 62 0.4

3. Model definition
3.1. Loadings

The proposed exercise takes into account the following loadings, acting on the 2D rigid model:

1. dead weight
2. hydraulic pressure
3. uplift pressure acting over the dam base

The hydraulic pressure was accounted considering five different water levels (Table 2) that
represent possible operating or limit conditions, as well as overtopping.

The uplift pressure (Figure 2) was evaluated considering the following assumptions:

1. Case A: Drainage system effective (probability = 0.90)
2. Case B: Drainage system ineffective (probability = 0.10)

For each water level, and for both effective and ineffective drain, the crack length (Table 2)
was determined according to the rotational limit equilibrium. The cross section of the dam was
idealized as a beam with variable section, in which the normal compressive stress varies
linearly, and no tensile stress is allowed at the sliding surface. The evolution of the horizontal
crack was simulated by reducing accordingly the effective area at the interface dam-
foundation that provides resistance to overturning moment.

The pressure distributions along the sliding surface vary according to Figure 2 (Case A: left;
Case B: right).



Table 2: Water levels and crack lengths according to drain conditions

WATER LEVEL CRACK LENGTH CRACK LENGTH
(in m over (in m) for an (in m) for an
dam-foundation effective drain ineffective drain
contact plane) (Case A) (Case B)
75 0.0 0.0
78 0.0 18.1
80 0.0 40.1
82 3.7 60.0
85 12.0 60.0

@~ -

h h

drain
axis

I crack tip

|
P=pgh I 0.2P PI

crack tip

Figure 2: Uplift pressure variation along the dam base in case of an effective (left) and an
ineffective (right) drain

3.2. Limit state functions

The limit state function, g* - expressed as a function of the random independent variables,
friction angle, @ and cohesion, c¢ - is obtained by balancing the shear strength, R along the
sliding surface and the driving hydrostatic force, S :

S (1)

Any point (¢ ,c) in the 2-dimensional space is in the safety or failure domain, depending on
whether the function is positive or negative (Figure 3).



Water level =78 m

120
100
80
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40

cohesion (Pa) angle of friction (°)

Figure 3: Example of 3D surface relevant to a non-linear limit state function

The resistance force R can be expressed as:

R=(N-U)tg @ +B
(N-U)tg ¢ +Bc o)

being:

N, the dead weight in N/m (fixed)

U, the uplift in N/m (fixed)

B, the contact area in m*/m (fixed)

@, the angle of friction along the contact surface in degrees (random)
¢, the cohesion along the contact surface in Pa (random)

The driving hydrostatic force does not depend on the random variables and can be expressed
as:

1 2
S== h
) Pwg (3)

being:

p. the water density in kg/m? (fixed)
g the gravity acceleration in m/s” (fixed)
h the water level in m (fixed)



The limit state functions, defined on the basis of the considered water levels and depending on
the drainage system effectiveness, are summarized in Table 3 and Table 4.

Table 3: g* functions (Case A: effective drain)

Water level [m] g* function - (Case A: effective drain)
46940850-tg@ +60-c

75 1=0
27590625
46499400-tgp +60-c
78 -1=0
29842020
46205100-tgp +60-c
80 EY -1=0
31392000
45910800-tgp +60-c
82 £9 -1=0
32961600
45302580-tgp +60-c
85 £9 -1=0
35316000

Table 4: g* functions (Case B: ineffective drain)

Water level [m] g* function - (Case B: ineffective drain)

75 35%M600¢g@+60-c_1=0
27590625

78 28096821¢g@-+60-c__1=0
29842020

80 18697860-tg(p+6o-c__1=O
31392000

82 97119oo-tg¢-+60-c__1_
32961600

85 7946100-tg(p+60-c_1_
35316000

3.3. Reliability methods and probability density functions

Estimations of sliding failure probability P; were computed by means of different methods
grouped into three levels according to the classification proposed by Minguez [3]:

1. Level 1: the global safety factor according to the classical approach used in structural safety
assessment.

2. Level 2: they includes the First Order Second Moment (FOSM) methods, which make a
linear approximation of the limit state function and consider the first two moments of the



joint probability density function distribution only. In the present work the FOSM Taylor
method and the Hasofer-Lind method were used.

3. Level 3: They provide a more accurate evaluation of the probability of failure, as they
consider all the information of the probability density function and not only the first two
moments. In the present work Montecarlo simulations method was used.

In the following sections few hints of each adopted method are provided (Altarejos Garcia [4]).

3.3.1. Safety factor approach

The global safety factors Fs are obtained from (4), assigning the mean value of both friction
angle (U, = 37°) and cohesion (u. = 0.367 MPa):

F Rl (N-Ujtgng +Bu
s s 1 2
Epwgh (4)

3.3.2. FOSM methods

The FOSM Taylor method and the Hasofer-Lind method can deal with normally distributed
random variables only and make a linear approximation of the limit state function.

The typical output of these methods is the reliability index, B, which is defined as the number

of standard deviations between the expected value of the function g*(¢, c) and the limit state
value defined as g*(9, c)=0. The reliability index 3 gives a relative measure of safety: the higher
B, the safer the structure. The probability of failure, P; can be evaluated through the following
equation:

Pilg*(¢,c)<0] =@ (-B) (5)

where @ denotes the Cumulative Density Function (CDF) of the standard Normal Distribution,
computed as the integral of the Probability Density Function (PDF).

With the FOSM Taylor method, the reliability index 3 can be calculated as follows:

_ Elg*]_ 8% (x4
O O (6)

B



being E[g*] and ng* respectively the first and second moment of the probability distribution of
the limit state function. The first moment E[g*] is computed introducing the means p of the
random values into the limit state function, while the second moment is given by:

(7)

g*(ﬂ¢7+o-¢)_g*(ﬂ¢_o-¢)j2+[g*(ﬂc +O—c)_g*(/uc_o-c)J2
2 2

O'g*2 =Var[g*]= [

being Var[g*] the variance of the probability distribution g*, and o the standard deviations of
the random values.

With the Hasofer-Lind method, with random variables statistically independent, as in this case,
the reliability index P is calculated as follows:

(@) o 0

2 2
S =min [(0_'%J +(C_’UCJ subjected to g*(®, ¢) =0

The point (@, ¢) that minimizes the reliability index equation (8) was computed with Microsoft
Excel optimization Solver.

3.3.3. Montecarlo simulations

The MATLAB Statistic Toolbox [5] was used to perform the Montecarlo simulations.

The Probability Density Functions (PDF) to properly model the random variables ¢ and ¢ were
selected by fitting experimental data with the best Cumulative Density Functions (CDF)
available in the Statistic Toolbox.

The Normal Distribution provides the best fit for the friction angle, while Rayleigh and
Lognormal Distributions for the cohesion (Figure 4). The latters, in particular, prevent the
random variables to assume unrealistic or non-physical values (e.g. < 0). Table 5 summarizes
the three combinations of probability distributions adopted in this study for the Montecarlo
simulations.

Table 5: Distributions for Montecarlo simulations

CASE FRICTION ANGLE COHESION
DISTRIBUTION DISTRIBUTION

1 Normal Normal

2 Normal Rayleigh

3 Normal Lognormal
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Figure 4: Distributions fitting the Cumulative Density Function of provided cohesion data

Since Montecarlo method becomes more and more accurate as the number of samples
increases, one million of simulations have been found to be the optimum to provide stable and
accurate solutions.

The Normal Probability Density Function is given by:

where Ly and Oy represent the mean and the standard deviation of @ and c respectively,
obtained from the experimental data of Table 1.

The Rayleigh Probability Density Function for the cohesion is given by:

C2

267

PDFyp =bize [ J with c> 0 (10)

where b = 309300 Pa, identified through the fitting process (Figure 4).



The Lognormal Probability Density Function requires first the computation
and { of the cohesion, starting from its mean L. and variance Var[c]:

_ 1.,
A=In(u,) ZC

(? = In[1+ Varz[c]}

Ke

The PDF of the Lognormal Distribution is defined as (Figure 5):

[ (in(c)-py?
1 262
e

cy/276°

The probability of failure P; can be then estimated by

m(g*(¢,c)<0)

P= X

of parameters A

(11)

(12)

(13)

(14)

where m is the number of failures (when g*(@, c) < 0) and N is the number of trials (one million

in this case):
3 T T T T T T T T T
[ Icohesion data
: : : : m \armal distribution
agb... T S fo Lognormal distribution H
: : : : e Py liigh distribition

PDF

osC 400 | | |- ‘

0

: :
] 01 02 0.3 0.4 0.5 06 07 0.8 0.9 1
cohesion (MPa)

Figure 5: Probability Density Functions fitting the provided cohesion data



3.4. Event tree for failure probability calculation

According to the formulators requirements, for each water level the following conditions must
be considered:

1. Case A: effective drain probability = 0.90
2. Case B: ineffective drain  probability = 0.10

It means that P; can be calculated with the following equation:

Pf:o'g.Pf,CaseA +0'1.Pf,CaseB (15)

resulting from the event tree of Figure 6.

P;=0.9 Ps case a = [value]
—= Case A: effective drain — Failure
Py
Water level
[value] m

P;=0.1 Pj, cxse 8 = [Value]

L Case B: ineffective drain — Failure

Figure 6: Event tree for P; calculation

4. Results

Results in terms of sliding failure probability (except for Level 1 method for which the global
safety factors are provided) are summarized in Tables 6 to 11.

Table 6: Level 1- Global Safety Factor (variables: @, c)

Water level (m) Global Safety Factor
75 2.95
78 2.68
80 2.50
82 2.33

85 2.15




Table 7: Level 2— FOSM Taylor and Hasofer-Lind (variables: @, c)

Water level (m) P; P;
(FOSM Taylor) (Hasofer-Lind)

75 1.06E-02 3.95E-03

78 1.72E-02 9.03E-03

80 3.19E-02 2.32E-02

82 6.20E-02 5.27E-02

85 7.96E-02 6.85E-02

Table 8: Level 3— Montecarlo Simulations (variables: ¢, c)

Water level Ps
(m) Friction angle: Normal  Friction angle: Normal  Friction angle: Normal
Cohesion: Normal Cohesion: Rayleigh Cohesion: Lognormal

75 3.48E-03 1.12E-04 7.95E-05

78 8.08E-03 1.08E-03 9.85E-04

80 2.14E-02 1.05E-02 1.27E-02

82 5.02E-02 4.34E-02 5.41E-02

85 6.58E-02 5.84E-02 6.84E-02

It can be noticed the Level Il methods provide quite different results, in particular for lower
water levels. That is possibly due, apart the different level of approximation of the two
methods, to the fact that the limit state functions are non-linear at the design point (Figure 3).

In order to understand such discrepancies, we additionally considered tan@ as random
variable, instead of ¢ (Table 9 to 11). In this way the limit state functions become linear
(Figure 8) and the Level Il methods converge to the same results (Table 10).

With Level 3 methods, the solution still depend on g* function (non-linear or linear, Figure 9)
but also it strongly depends on the type of distribution model chosen to model the random
variables (Table 8).

As it can be seen in Figure 7, if trials include negative values for cohesion, as it may happen
with the Normal Distribution, the number of samples falling in the failure domain grows
significantly. That justifies the fact that Rayleigh and Lognormal distributions provide closer
results, being their difference mainly due to the possibility of the Rayleigh Distribution to
impose a threshold to the highest values.

When Normal Distribution are used for both ¢ and c, Level Il and Ill results can be directly
compared, highlighting in particular that Hasofer-Lind method provides more accurate results
than FOSM Taylor.
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Table 9: Level 1- Global Safety Factor (variables: tang, c)

Water level (m)

Global Safety Factor

75
78
80
82
85

3.06
2.78
2.59
2.42
2.23

Table 10: Level 2— FOSM Taylor and Hasofer-Lind (variables: tang, c)

Water level (m) P; P;
(FOSM Taylor) (Hasofer-Lind)
75 7.67E-03 7.67E-03
78 1.30E-02 1.30E-02
80 2.63E-02 2.63E-02
82 5.60E-02 5.60E-02
85 7.27E-02 7.27E-02
Table 11: Level 3 methods — Montecarlo Simulations (variables: tang, c)
Water level Ps
(m) Friction angle: Normal  Friction angle: Normal  Friction angle: Normal
Cohesion: Normal Cohesion: Rayleigh Cohesion: Lognormal
75 7.65E-03 2.69E-03 3.07E-03
78 1.30E-02 4.96E-03 5.65E-03
80 2.63E-02 1.41E-02 1.67E-02
82 5.59E-02 4.80E-02 5.99E-02
85 7.26E-02 6.51E-02 7.65E-02

5. Conclusions

In this paper reliability methods were applied to evaluate the sliding failure probability to be
compared with the global safety factors of a concrete gravity dam, for different reservoir levels

and considering different assumptions on the effectiveness of the drainage system.

Results have highlighted the importance to properly select the distribution type to model the

random variables. Tails effects (low probability values) can strongly affect the results. For such

reason the experimental fitting process must be particularly accurate. Also, when possible, it
may be convenient to transform random variables in order to obtain linear, or almost linear,
limit state functions. That reduces the approximation level in the analyses and, for this
particular case, it should be more appropriate, as usually shear tests on concrete samples

provide directly tan@, instead of @.



Level IIl methods, as Montecarlo simulations, allow to model random variables with different
type of distributions, so that tail effects can be better investigated and results are definitely
more accurate, provided that the trial number is sufficiently high.

Of course, in case of more complex models with more random variables, Montecarlo
simulations may become impracticable due to the high number of simulations to perform, and
reliability methods, such Level Il methods, can provide good estimations of P;.
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Summary

The limit equilibrium method was chosen to evaluate safety factor against sliding of the
gravity dam cross profile for several water levels. The crack on dam-foundation interface starting
from dam’s upstream edge is considered to develop in the contact area subject to bending tensile

stresses ( 0, ) from load combinations consisting of dead weight + hydrostatic load + uplift load..

Initially, the safety factors against sliding mode of the profile for five reservoir water
levels are computed as averages of the safety coefficient values obtained for f and c pairs given by
formulator (deterministic method with global safety factor).

The probabilities of failure for the sliding mode of the profile for five reservoir water
levels are computed using Level 2 methods (FOSM — Taylor’s series, Point estimate method and
Hasofer-Lind method) and Level 3 method (Monte Carlo simulation). In order to compute failure
probabilities the safety coefficient functions were considered to be normally distributed.

A specialized computer program in the frame of MATHCAD computer code was written to
perform these analysis...

A comparative analysis, using SAP 2000 program, by linear elastic finite element method
(FEM) for unitary system dam-foundation was carried out for two reservoir water depths to
compare the crack lengths versus values obtained by limit equilibrium method.

A general remark is that the crack lengths and the probabilities of failure are very
sensitive with the method used for their evaluation.
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1. Introduction

Traditionally, in the design of the gravity dam cross sections are checked the followings
two conditions:

- sliding stability along the dam-foundation interface or along a weak plane surface in the
dam foundation;

- safety to overturning around downstream edge of the profile.

Usually, the sliding stability is condition leading to the profile size [1], [2].

The common procedure recommended by regulations for gravity dam cross section
design consists of limit equilibrium method. Once the dam’s profile is determined the behavior of
the unitary dam-foundation system may be checked and improved using other refined methods
especially based on finite element procedure (FEM). Generally, the limit equilibrium method leads
to conservative values of the dam’s profile safety factors against sliding or overturning, but it has
the advantage of the simplicity.

It may points out the behavior of the dam-foundation unitary system is a complex task.
Intensive investigations concerning gravity dam failure based on fracture mechanics and
nonlinear finite element procedure carried out in the last decades have contributed to
understand this complex task [3]. However, reliable computation results of this analysis need in
situ data very difficult to obtain. Local factors as foundation rock heterogeneousness and
discontinuity (faults, breccias, cracks), irregularities of the dam-foundation interface, large
variability of the mechanical characteristics (friction coefficient and especially cohesion — on the
dam-foundation contact) can have significant influence on results.

For the above mentioned reasons, the limit equilibrium method was chosen in the
present paper as base to evaluate the probability of failure of a gravity dam for the sliding failure
mode [4]. The safety factors and the failure probabilities against sliding for the dam’s cross profile
given by formulator are computed using a specialized computer program in the frame of
MATHCAD computer code.

Appearance and extension of the crack on the dam-foundation interface starting from
dam’s upstream edge is accepted in the area where the vertical normal stresses from load
combinations are bending tensile ones. The vertical normal stress diagram on the contact is a
linear one, computed according to strength of materials (eccentric compression). The working
(active) area on the dam-foundation interface to load combinations after crack’s development is
considered only the compressed area. The size on upstream-downstream direction of the working
area is calculated be successive iterations.

The cracks extension computed as above mentioned are compared for two reservoir
water level with equivalent analyses finite element method (FEM) using SAP2000 computer code.

2. Method of analysis

The sliding stability of the dam’s profile given by formulator (fig.1) is determined by two-
dimensional limit equilibrium method.
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Fig.1. Loads acting in dam’s profile and working area exemplification after crack
development

The load combinations consist of: dam’s dead weight, hydrostatic load for five reservoir
water level given by formulator and uplift load corresponding to each reservoir water level.
The parameters taken into account for analysis are presented in Table 1

Table 1

Parameter Value
Mass gravity of the dam body (kN/m?) 24
Compressive strength of the dam body (kPa) 24000
Tensile strength of the dam body (kPa) 1500
Compressive strength of the foundation rock (kPa) 40000
Tensile strength of the foundation rock (kPa) 2600
Tensile strength on the dam-foundation interface (kPa) 0.0
Cohesion on the dam-foundation interface c (kPa) See Table 2
Friction angle on the dam-foundation interface ¢ (°) See Table 2

The friction angle and cohesion on the dam-foundation interface are considered as
random variables and available data in the form of fifteen pairs of values are given in Table 2.



Table 2

Sample Friction angle Cohesion
() (kPa)
1 45 500
2 37 300
3 46 300
4 45 700
5 49 800
6 53 200
7 54 600
8 45 0
9 49 100
10 60 200
11 63 200
12 62 400
13 60 700
14 56 100
15 62 400

The uplift load is calculated as weighted average of two cases of drain effectiveness with
discrete probabilities associated, as follows (fig. 1):

* drains effective with 90% probability corresponding to 0.2 y,, hW at drain axis if . £10
m and at drain axis and downstream crack limit if 1.>10 m;

* drains not effective with 10% probability corresponding to y,, hW at drain axis if I, <10 m
and at drain axis and downstream crack limit if 1.> 10 m;

(7, - water mass gravity, h,, — reservoir water depth given by formulator, respectively
75,78,80, 82 and 85 m, |, — crack length starting from dam’s upstream edge).

Consequently the uplift pressure (p,) at drain axis if . <10 m and at drain axis and
downstream crack limit if |. > 10 m results:

p,=(0.9x0.2+0.1x1.0) v, -h, =028 y,, -h, (1)

w

Uplift pressure at the dam’s downstream edge is zero in all the cases.
The global sliding safety factor (FS) is calculated with much known relations:

[G—S(IC)]tal_rI1¢+ B(l)-¢c (2)

where G is dam’s profile weight (kN/m), S(l) — uplift load depending of crack development,
(kN/m) @ - friction angle in the interface, B(l.) (m)— working area on dam-foundation interface

FS =

depending of crack development, ¢ — cohesion in the interface (kN/m?), H — hydrostatic load
acting on dam upstream face (kN/m).



The vertical normal stresses on the dam-foundation interface are calculated with
eccentric compression relation:

upstream edge _ ZV + Z M
Ov, downstream edge — Q(lc) W (lc)

(3)

where ZV is summation of all vertical loads (dam weight, upstream load etc), Q(l.) — working

(active) area depending of crack length, Z M - summation of moments of all loads versus gravity

center of the working area, W(l.) - strength modulus.

The length of the crack on interface developed from dam’s upstream edge corresponds
with interface area where the vertical normal stresses calculated with relation (3) are tensile
stresses. The cracked area becomes non-active one and the calculus is repeated with the
remaining active (working) area. In about three iterations is reached the real crack length and
corresponding working area B(l,) (see fig. 1):

B(lc)-1= (B -Ic)-1 (4)

The data set for friction angle (¢) and cohesion (c) given by formulator were considered
as sample from population statistics. Statistic analysis of data set has pointed out the difference
between standard deviations assuming the data as sample (number of values N<30) or as
population statistics (N>30) is less than 3.5%.
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Fig.2 The probability distribution for friction angle (@) and cohesion (c)
on dam — foundation interface



The distribution of (¢)and (c) are very close of a normal distribution (fig.2). For physical
reasons the variations of the friction angle on dam-foundation interface was limited between 25°
and 80°. The variation domain of the cohesion on interface was also limited between 0 and 800
kPa (negative cohesion isn’t physically possible).

In order to compute probabilities of failure for the sliding mode using Level 2 method
(FOSM Taylor’s series, Point estimate method and Hasofer — Lind method) the safety factor
functions were considered to be normally distributed.
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Fig.3 Exemplification with ¢ and c data set and data generated by Monte Carlo simulation.

The evaluation of the safety factor in Monte Carlo method, a set of values corresponding
to () and (c) in the restricted domain due to physical characteristics was generated randomly
following a normal distribution (fig. 3). Probability of failure is given by ratio between the
numbers of unfavorable values versus the total number of values computed for the safety
coefficient. The total number of evaluation of the safety coefficient was 10’.

3. Results of analysis

In the Table 3 are presented some results concerning crack’s lengths (I.), vertical normal
stresses (0, ) at the interface working area B(l) and safety factors against sliding using limit

equilibrium method.



Table 3

Water level Crack’s o, at the interface working Factor of safety
(in m over dam-foundation length area (kPa)
contact plane) m Upstream Downstream | (for sliding failure

edge edge mode)
75 0 249 1296 3.031
78 0 80 1448 2.779
80 1.517 0 1556 2.610
82 6.369 0 1684 2.419
85 14.367 0 1934 2.137

The contours of the global safety factors to sliding failure mode function of ¢ and c for 75
m and 85 m reservoir water depths are illustrated in figure 4.
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Fig.4 Contours of the global safety factors to sliding failure mode for 75 m and 85 m reservoir
water depths

The failure probabilities against sliding of the gravity dam cross profile using Level 2
reliability methods are presented in the Table 4.

Table 4
Water level Probability of failure (%)
(in m over dam-foundation FOSM Point Hasofer-Lind
contact plane) Taylor Method Estimate Method Method
75 1.035 0.706 0.120
78 1.386 0.960 0.267
80 1.695 1.183 0.435
82 2.123 1.482 0.679
85 3.226 2.266 1.317




Normal distributions of the data concerning safety factors against sliding failure mode
computed with Level 2 reliability method for 75 m and 85 m are illustrated in figures 5, 6 and 7.
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The failure probabilities against sliding of the gravity dam cross profile using Level 3
reliability method — Monte Carlo simulation are presented in the Table 5

Table 5
Water level (in m over dam-foundation Probability of failure by Monte Carlo
contact) simulation (%)
75 0.039
78 0.093
80 0.163
82 0.283
85 0.681

4. Comparative analysis by finite element procedure

In order to evaluate the degree of approximation of values for crack lengths (l.) calculated
on the basis of the limit equilibrium method a comparative analysis by finite element procedure
(FEM) was performed.

The finite element mesh of the unitary dam-foundation system is illustrated in the figure
8. The same two-dimensional PLANE element with incompatible modes included from SAP2000
element library was used for both, dam body and foundation area. This element is a quadrilateral
with 4 (3) nodes having two translation degrees in each node. The mesh consisted from 1912
nodes, 1810 finite element, and 4382 degree of freedom total (fig. 8).

T 111
117
17

Fig.8 Finite element mesh of the dam-foundation system
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The translations of nodes placed on lateral and inferior edges of the foundation were
blocked on both directions. The analysis was performed in the strain plane hypothesis and linear
elastic behavior of both, dam concrete and foundation rock. In the Table 6 are presented the
material characteristics taken into account in this analysis.



Table 6

Material parameters Dam Foundation
Young modulus (MPa) 24000 41000
Poisson ratio 0.15 0.10
Mass gravity (kN/m?) 24 0.
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Fig.11 Vertical normal stresses diagrams ( ;) on dam-foundation interface for

load combinations of dead weight + hydrostatic load (85 m and 82 m reservoir water depths) +
uplift pressure load.
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The analysis was performed for two levels in the reservoir, corresponding to 85 m and,
respectively 82 m water depths. The load combinations consisted of dead weight, hydrostatic load
on upstream dam face and uplift load considered as weighted average of two cases of drain

effectiveness given by formulator (see formula 1).
The hypothesis accepted in the limit equilibrium method, namely the crack on the dam-

foundation interface is corresponding to area where the vertical normal stresses (o, ) are tension
was assumed also in the finite element analysis.

The contours of the vertical normal stresses (o, ) for the load combinations mentioned
above with water depth of 85 m are illustrated in figure 9 and, respectively with water depth of
82 m are illustrated in fig 10.



In figure 11 are selected o, on dam foundation interface corresponding to figures 9 and

10. It can be seen the lengths of cracks are 16.24 m for 85 m reservoir water depth and,
respectively 10.65 m for 82 m reservoir water depth.

A compared between results obtained by limit equilibrium method and linear elastic FEM
is presented in the Table 7.

Table 7
Water level Crack length (m) Increase rate
(in m over dam-foundation Limit equilibrium Linear elastic in FEM
contact plane) method FEM %
85 14.367 16.24 13%
82 6.369 10.65 67 %

It seems that crack’s lengths developed on dam-foundation interface starting from dam’s
upstream edge are very sensitive with methods used for their evaluation.

5. Concluding remarks

Based on results of analysis, the followings concluding remarks may be pointed out:

¢ The evaluations of the failure probabilities to sliding failure mode of the gravity dam
profile were based on limit equilibrium method, a simple method known as conservative one.
However, the lengths of cracks on dam-foundation interface starting from dam upstream edge
computed by linear elastic FEM have resulted longer with 11...67% versus those computed in
equivalent conditions by limit equilibrium method.

e In all cases the failure probabilities computed by Monte Carlo simulation were smaller
versus those computed by Level 2 reliability methods. The highest values for failure probabilities
have resulted in FOSM Taylor method.

e The analysis have shown that both, crack length on dam-foundation interface and
failure probabilities to sliding failure mode of the gravity dam profile are very sensitive with
methods used for their evaluation.
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Summary
Risk assessment of dams (DRA) is nowadays very well accepted especially for the assessment of

existing dams. The last decade corresponds indeed to an important widespread of DRA worldwide.
Either qualitative or quantitative, these methods reframed the notions of probability of loading, and
consequently the probability of failure.

The actual ICOLD Benchmark Workshop is aimed to provide a comprehensive review of most of the
relevant existing methods that are qualified for providing an evaluation of the probability of failure of
a given dam.

The actual paper provides three different methods for the stability assessment of the proposed 80m
high gravity dam: (1:) Deterministic approach (Level-1), (2:) Taylor’s series approximation limited to
the FOSM or First Order Second Moment (Level-2), and finally (3:) Monte-Carlo method (Level-3).

While Level-1 method do provide a factor of safety only, both Level-2 and Level-3 methods do
provide the probability of failure. Comparison of the results provided by means of the latter two
methods, and causes of the discrepancy are discussed.

1. Objectives

The objective is to obtain relationships between water levels, factors of safety and probabilities of
failure for a gravity dam. This can be done using behavior models for the dam-foundation system
together with reliability techniques that allow for uncertainties in the parameters, using random
variables.

For the purpose of comparison and evaluation of advances in this field, the dam proposed is taken
from the Theme 2 of the 1999 ICOLD Benchmark.



The proposed exercise aims at analyzing the dam with a 2D model. The model should be chosen by
participants and it can be a limit equilibrium model or a deformable body model. The factor of safety
against sliding is then calculated for several water levels.

Following this step, participants should estimate the probability of failure for the sliding failure mode
using at least one Level 2 reliability method and a Level 3 Monte Carlo simulation method. On the
Appendix, some useful information on reliability techniques and how they can be applied to this
problem can be found.

2. Dam Description

2.1 Geometry
The gravity dam that is considered for the actual benchmark is an 80m high concrete dam. Its

geometry is shown hereafter:
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Figure 1 Dam geometry

2.2 Foundation
The full geometry including the foundation is shown in the next figure. The foundation has a

rectangular shape with height of 80 m and a total length of 300 m (120 m upstream, 60 m under de
dam, 120 m downstream).

2.3 Material properties
Data on material properties for dam and foundation are given in Table 1.



Table 1 Data for dam and foundation materials

Material parameters Dam Foundation
Young’s modulus (MPa) 24000 41000
Poisson’s ratio 0.15 0.10
Mass density (kg/m3) 2400 2700
Compressive strength (MPa) 24 40
Tensile strength (MPa) 1.5 2.6
Strain at peak compressive strength 0.0022 0.0025
Strain at end of compressive softening curve  0.10 0.15
Fracture energy (N/m) 150 200

Data for material properties for dam-foundation interface are given in Table 2.

Table 2 Data for dam-foundation interface

Parameter Value
Shear stiffness (MPa/mm) 20
Tensile strength (MPa) 0.0
Friction angle (2) See Table 3
Cohesion (MPa) See Table 3
Dilatancy angle (9) 0
Softening modulus (MPa/mm) -0.7

Friction angle and cohesion at the dam-foundation interface are considered as random variables.
Available data in the form of fifteen pairs of values are given in Table 3.



Table 3 Data for friction and cohesion at the interface

Friction angle Cohesion Friction angle Cohesion
Sample Sample
(®) (MPa) (®) (MPa)

1 45 0.5 9 49 0.1
2 37 0.3 10 60 0.2
3 46 0.3 11 63 0.2
4 45 0.7 12 62 0.4
5 49 0.8 13 60 0.7
6 53 0.2 14 56 0.1
7 54 0.6 15 62 0.4
8 45 0.0

3. Water Levels
The stability of the dam is to be determined for five (5) different water levels (Table 4). Three (3) of

them do not cause crest overtopping; that is 75m, 78m and 80m. However, water levels 82m and
85m do cause an overtopping corresponding respectively to 2m and 5m.

It is known from dam safety experience that gravity dams, even though not designed for such high
water levels, are able to withstand overtopping with water depth varying from moderate (about 1m)
to few meters. An overtopping with a water depth of 5m constitutes a very important loading for a
gravity dam that was not designed for such a loading case.

Table 4 Considered water levels

Water Level(m) 75 78 80 82 85

Overtopping? No No No Yes VYes

4. Drainage Conditions

The considered loadings are self-weight, hydraulic pressure acting on the upstream face of the dam
and uplift acting on the base of the dam. Development of a crack at the interface is to be taken into
account and uplift pressure should be evaluated accordingly.



Two cases of drain effectiveness are considered, with discrete probabilities associated:
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Figure 2 Proposed uplift pressure profiles alternatives

5. Software

Calculation of the factor of safety was achieved by means of CADAM software that was developed in
Ecole Polytechnique de Montreal. The software allows for the computation of the factor of safety
under various usual conditions such different water levels and failure modes (mainly: sliding and
overturning).

Overtopping loading conditions are implemented, by taking into account the forces due the presence
of water above the crest and on the downstream slope of the dam. Uplift pressures are adjusted
accordingly.

It allows also for the evaluation of the probability of failure under the framework of the Monte-Carlo
method. Various parameters can be presented on a probabilistic form using a uniform, a normal, or a
lognormal distribution. For instance, cohesion and friction angle are considered independent. The
maximum number of samples that are randomly issued is limited to 250,000. For a given parameter,
the required data are the minimum, mean and maximum values, the standard deviation, and
probability distribution type. The difference between the maximum and the minimum is limited to 5
times the standard deviation. The software does not check if the source data follows the distribution
that is chosen by the user.




6. Deterministic traditional approach

6.1 Actual status in practice
Based on the majority of dam safety and dam design guidelines, the dam stability assessment is

based on the comparison between a calculated factor of safety and a required factor of safety. The
dam is said stable under a given loading condition and a given failure whenever the calculated factor
of safety is below the required one. The latter is usually steadily decreased in order to take into
account the less frequent character of transient loadings, as well as any other loadings of low
probability of occurrence.

In general, all modern dam safety and dam design guidelines, that are in accordance with ICOLD
bulletins and current State of the Art, provide similar and comparable dam stability requirements.

6.2 Strength parameters
In the case of a limit equilibrium or friction factor stability assessment, the main parameters that are

required in order to conduct the analysis are the cohesion (c) and the friction (@) along the dam-
foundation interface.

In the case of the actual dam, 15 (c, ¢) values are provided such as shown in Table 3. It is recalled
that the origin of these data is not discussed within the formulation of the problem. Data #8 with a
cohesion of zero is found quiet particular since it is usually corresponding to a purely frictional
material.

All the 15 data are plotted hereafter considering a Mohr-Coulomb failure mode. Moreover, the lower
bound (i.e. Line 20) and the upper bound (i.e. Line 21) corresponding to the interval of confidence
based on a normal distribution for either ¢ and @, are shown in bolt red lines.
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Figure 3 Mohr-Coulomb strength parameters at dam-foundation interface



6.3 Choice of strength parameters
In the case of a limit equilibrium or friction factor stability assessment, the main data are limited to a

single set of strength parameter (c,@).

Due to the very important scatter in the provided data set, a decision is to be made regarding the
selection of data that are to be used for the stability analysis.

For the actual work, it was decided to consider three (3) different strength parameters datasets and
two (2) drainage conditions.

6.4 Results
The selected parameters and the results are provided in the following Tables.

Table 5 Results of Part 1. Deterministic Approach. Lower bound (9=48,36° ; ¢ =241,73 kPa)

Factor of Safety Factor of Safety
Water Level (m)
(No Drainage) (Drainage)

75 1,99 2,59
78 1,40 2,16
80 0,82 2,04
82 0,33 1,94
85 0,26 1,78

Table 6 Results of Part 1. Deterministic Approach. Upper bound (¢=56,44° ; c =491,61 kPa)

Factor of Safety Factor of Safety
Water Level (m)
(No Drainage) (Drainage)

75 3,03 3,83
78 2,11 3,17
80 1,21 3,00
82 0,45 2,85

85 0,35 2,62




Table 7 Results of Part 1. Deterministic Approach. Average (9=52,40° ; c =366,67 kPa)

Factor of Safety Factor of Safety
Water Level (m)
(No Drainage) (Drainage)

75 2,49 3,18
78 1,74 2,93
80 1,01 2,77
82 0,39 2,64
85 0,30 2,18

6.5 Discussion
The results presented in the Tables attest and recall the tremendous increase of stability

corresponding to the contribution of an efficient drainage system. The important scatter that is
noticed regarding the data is totally overridden by the condition of the drainage system.

7. Taylos’s Series Approximation Approach

7.1 Actual status of this method in practice
This method is not widely used in the professional practice for the moment.

7.2 Main aspects of the FOSM method
The details of the method are comprehensively developed by the Formulator of the actual Theme

(see provided Appendix of Theme C). The main aspects are recalled hereafter for completeness
purposes.

The performance function is stated by the Formulator as:
g*(c@ =r/s-1

Where r is the resistance and s the strength.

Noting that (r/s) represents the factor of safety (Fs), one can restate the latter as follows:
g*(c, ) =Fs—-1

The performance g*(c, @) is evaluated based on the chosen dataset (c,?). That is the first moment:

gl*( (4 (p)



It is evaluated as well based on the limits of possible datasets. That is based on four (4) different
strength parameters such as follows:

g21*(c, @+ 0y), 822™(c, ®-0y), 823*(Cc+ 0., @) and g*(c- O, Q)
The second moment is calculated as follows:
Var[g*] = Op = [ (82* - 822%)/2 )" + [ (825* - 824%)/2 )
The reliability index is then calculated such as follows:
B =(E[g*] - &8*faiure ) / Og=-(E[8*] —0) / Og+ - ( E[g*]) / O~

In order to end up with a probability of failure, an assumption is to be made regarding the
distribution of g*. One can suggest a normal distribution since the average (ug* or E[g*]) of g*, as
well as the standard deviation (Var[g*] = og* ) of g* are known:

g* = N (Ug* , Og’)
Finally the probability of failure P{(g* < 0) is calculated as follows:
Pi(g* < 0) = Fn(0) = P[ (0 - Yg*) / Os] = P[]

7.3 Results
Derived results are displayed in the following Table.

Table 8 Results of Part 2. FOSM Probability of failure.

Water Level (m) Probability of failure

75 0,009275148
78 0,016510281
80 0,060090653
82 0,1129972
85 0,12443765

7.4 Discussion

It is found that the probability of failure in the case of the highest water levels is directly linked to the
probability of occurrence of an efficient drainage system. This is in the vicinity of 0,10 such as shown
in the Table above.



8. Monte-Carlo Method

8.1 Actual status of this method in practice
This method is gaining a large acceptation and a tremendous popularity. Its main advantage relates

to the unavoidable existence of a scatter that is encountered when strength parameters are to be
defined.

While deterministic methods require a single strength parameters dataset, Monte-Carlo method
allows for the consideration of large range of datasets that are still within the engineering limits and
the brackets that are usually proposed by the expert.

8.2 Randomly processed datasets
Strength parameters datasets that are considered while running a dam stability software featuring

the Monte-Carlo are randomly processed by means of a special engine. Due to this inherent random
nature, it is worthwhile recalling that different runs using the same frozen data will provide different
results: that is different probabilities of failure. The difference between these calculated values are
essentially small.

8.3 Datasets statistical distributions
Monte-Carlo simulation requires a probabilistic distribution for each probabilistically varying

parameter. In the actual case, both Mohr-Coulomb strength parameters, cohesion and friction angle,
c and @, should be linked to a chosen distribution.

A statistical analysis of the provided data shows that both parameters fall fairly well into the widely
used normal distribution. For instance, a Henry diagram can be used for such a demonstration,
together with considering the cumulative probability of occurence.

Such a hypothesis was considered for all three analysis levels: the determination of confidence
intervals in order to define a lower bound and an upper bound in the case of the deterministic
approach (Level 1), for the Taylor’'s method (Level 2), and finally for the Monte-Carlo simulation
(Level 3).

8.4 Results
Strength parameters datasets that are considered while running a stability software featuring the

Table 9 Results of Part 3. Monte-Carlo Probability of failure.

Water Level (m) Probability of failure

75 0

78 0,000006




80 0,040654
82 0,100001

85 0,100002

8.5 Discussion
It is found that the probability of failure in the case of the highest water levels is directly linked to the

probability of occurrence of an efficient drainage system. This is in the vicinity of 0,10 such as shown
in the Table above.

9. Taylor’s series FSOM Versus Monte-Carlo Method

9.1 Results comparison
Both Taylor’s series approximation limited to the FOSM or First Order Second Moment (Level-2), and

Monte-Carlo method do provide a probability of failure.

Probabilities of failure provided by the use of Taylor's FOSM are found to be systematically higher
than those provided by means of the Monte-Carlo method.

Table 10 Probability of failure: Taylor’s FOSM versus Monte-Carlo Method

Probability of failure Probability of failure

Level 2 Level 3
FOSM Taylor Method Monte Carlo simulation

Water Level (m)

75 0,009275148 0

78 0,016510281 0,000006
80 0,060090653 0,040654
82 0,1129972 0,100001

85 0,12443765 0,100002
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9.2 Discussion
Taylor’s series approximation FOSM and Monte-Carlo methods lead practically to very similar results.

Result N°.1: For overtopping water levels, the probability of failure is practically equal to the
probability of having an efficient drainage system. That is about 10% in the actual case.

Result N°.2: Probabilities of failure provided by means of the Taylor’s series approximation FOSM are
systematically, but only slightly, higher that those provided by means of the Monte-Carlo method.

9.3 Main conclusion
The main conclusion that can be derived from this comparison can be stated as follows:



Result N°.3: Taylor's FOSM, although requiring much less complex computations compared to the
Monte-Carlo simulation, do provide results that are very fairly close to the later. The question is then
naturally raised about the relevance of the Monte-Carlo simulation, at least for the actual case.

10. Results Synthesis

10.1 Overall results comparison
In general, it is quite difficult to compare deterministic and probabilistic methods since attached

frameworks are very different. The following picture is an attempt to capture the entire process
showing factors of safety as well as probabilities of failure.

Since the probability of failure contains already the probabilities associated with the efficiency of the
drainage system, it was found appropriate to show the factor of safety in each drainage case.

From the picture below, one can realize that the water level corresponding to 82m represents a
particular value either for probabilistic or deterministic methods. It is an inflexion point. All curves
display a trend change above that particular water level. Such a water level corresponds to an
overtopping water thickness of 2m above the crest.
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11. Consequences for Safety Assessment of Existing Dams

11.1 Critical water level - Definition
The notion of “Critical water level” is found to be increasingly used by a large number of National

ICOLD Chapters worldwide. It corresponds to the water level that bring the structure to its limit of
stability; that is consequently with a factor of safety of 1,0.

Such a particular water level is called “Cote de danger” in the case of the French ICOLD chapter
(CFBR: Comité Francais des Barrages et Réservoirs). It is widely used such as in the French dam safety
guidelines for concrete dams, and the 2007 French Dam Safety Bill, and more specifically in the Bill of
June 12th, 2008 dealing with the Dam Risk Assessment issues.

11.2 Critical water level from the deterministic approach
Based on the considered strength parameters, the critical water level seems to correspond to a low

or moderate overtopping, at least in the case of no drainage. That is about 80,5m to 81m. In the case
of an efficient drainage, with a ratio of about 80%, factors of safety higher than 1,0 are found.

It is recalled that such a value reflects the practice when in absence of comprehensive data and
further detailed calculations, the critical water level is usually considered as about 1m above the
crest elevation.
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11.3 Critical water level from the probabilistic approach
Calculated probabilities of failure by means of Monte-Carlo simulation would suggest that the critical

water level is in the vicinity of 82m. This corresponds to an overtopping with a water depth of about
2m.

12. Consequences for Dam risk assessment

“Risk analysis methodologies need risk quantification. For an initial state of the dam-reservoir
system, and for a certain failure mode, this risk quantification requires the estimation of both the
probability of the loading scenarios and the conditional probability of the associated response of the
dam-reservoir system, together with the estimation of the consequences” (ESCUDER et al. 2011).

12.1 Maximum probability of failure
Each water level is normally linked to a given probability of occurrence P(Hw). In this case, the

probability of failure associated to a given water level corresponds to the probability of occurrence of
the given water level ( P(H,) ) times the probability of failure under that particular water level P«(H,,) :

Pe=P(Hw) x P(Huw)

Since the occurrence of very high water levels is usually very low, one can suspect that the
probability of failure corresponding to each water level will display a peak, that is then followed by a
steady decrease.



12.2 Implementation

The five (5) different water levels provided in the actual Benchmark are stated deterministically, with
no attached probability. When undertaking a dam safety assessment, the different water levels could
turn to be attached to various probabilities of occurrence.

For instance, one can suggest that highest water level (85m) could be attached to the PMF (Probable
Maximum Flood), and that the lowest water level could be considered as the normal water level with
a relatively high probability of occurrence.

The following Table was built based on the fact that several existing gravity dams were designed for
an inflow design flood (IDF) that is below the 1,000 years return period flood. It is noticed worldwide
that the existing spillway capacity of old dams is hardly sufficient for accommodating large floods,
knowing that the hydrologic hazard is dramatically increasing in the case of a large number of dams
worldwide; especially those with low to average reservoir capacity.

Table 11 Overall probability of failure the probability of occurrence of water levels

Water Level (m) 75 78 80 82 85

Water depth above normal 0 +3 +5 +7 +10
water level (m)

Crest Overtopping ? No No No Yes Yes
Water depth above crest - - - +2 +5
(m)
Type of water level Normal  Maximum Limit of Accidental Accidental
water water overtopping N°.1 N°.2
level
Possible associated - - - 10,000 PMEX

hydrologic event

Possible associated 10* 107 107 10* 10°®
probability of occurrence
P(Hw)

Probability of failure based 0 0,000006 0,040654 0,10000 0,10000
on Monte-Carlo method
Pf(Hw)

Overall probability of 0 6x10° 4,07x10°  1,0x10°  1,0x10”
failure Pf including the
probability of occurrence
of water levels

Note 1 : This is the 10,000 years return period flood.

Note 2 : PMF standing for the Probable Maximum Flood.




Table 12 Maximum overall probability

Water Level (m) 81 81

Water depth above normal
water level (m)

Crest Overtopping ? Yes Yes

Water depth above crest
(m) 1 1

Type of water level Accidental N°.1 Accidental N°.2

Possible associated
hydrologic event - -

Possible associated

probability of occurrence 3,16x10™ 5,00x10™
P(Hw)
Return Period (Years) 3,162x10° 2,000x10°

Probability of failure based
on Monte-Carlo method 0,1 0,1
Pf(Hw)

Overall probability of
failure Pf including the
probability of occurrence of
water levels 3,16x10° 5,00x10°

Associated Figure below Figure 10 Figure 11

Case # Case 1 Case 2
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12.3 Discussion
Such as announced above, the maximum overall probability of failure Pf including the probability of

occurrence of the different water levels do reach a peak in the neighborhood of a water level located
between the crest elevation (i.e. 80m) and 1m above the crest the crest (i.e. 81m).

The peak is found to move from 80m to 81m water levels depending upon the probability of
occurrence of the 81m water level.

Result N°.4: Based on the actual dam stability analysis, but also in the case of other dams, it is found
that the critical water level could be set equal to the crest elevation plus 1m. Such a result confirms
the widely used “rule of thumb” particularly in absence of more comprehensive analysis.

The maximum probability of failure should be between 4,07x10” and 5,00x10”. This is within the
values that are usually computed for gravity dams. The total probability of failure according to the
sliding mode, together with taking into account the entire Author’s reservoir water management
sample, would be in the vicinity of 8,3x10°.

4. Conclusion
The actual analysis consisted on the use of three different methods for the stability assessment of

the proposed 80m high gravity dam: (1:) Deterministic approach (Level-1), (2:) Taylor’s series
approximation limited to the FOSM or First Order Second Moment (Level-2), and finally (3:) Monte-
Carlo method (Level-3).

Although various important results deserve to be highlighted, it is found that the main result is
related to the fact that the relatively simple Taylor’s series approximation - limited to the FOSM or
First Order Second Moment (Level-2) -, is able to provide results that are fairly well comparable to



the much more complex Monte-Carlo simulation. The former is found to provide probabilities of
failure that are only few percent below the later.

As an extension of the required results, the paper tackles and discusses the engineering meaning of
the deterministic critical water level versus probabilistic critical water level. That is the water level
leading the structure to the limits of its stability. When the water level is attached to corresponding
probability of occurrence, one can find that the overall probability of failure for each water level
reaches a maximum for a given water level. Such results are of first importance in the framework of a
Dam Risk Assessment.
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Summary

Safety assessment of concrete dams is traditionally based on deterministic methods where factors of
safety are used. In recent years there has been a discussion considering the use of reliability based
methods in dam engineering. With these methods, the safety of the dam is assessed using the
calculated probability of failure. The objective of Theme C is to obtain relationships between factors
of safety and probabilities of failure for a given 2D dam. The factors of safety for the dam are
calculated using the commonly used and accepted limit equilibrium method. The probabilities of
failure are calculated using three different reliability based techniques with different stages of
accuracy, namely the Taylor series method, the Hasofer Lind reliability index and Monte Carlo
simulations. When deterministic methods are used, separate safety factors are calculated for each
load case while in the structural reliability analyses the dam is considered as a system consisting of
several load cases with different probabilities of occurring.
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1. Introduction

The objective of Theme C is to obtain relationships between factors of safety and probabilities of
failure for different water levels for a given 2D dam model. Only failure due to sliding at the
concrete-rock interface is considered. Considerations regarding displacements are excluded.

2. Deterministic methods

There are several techniques in order to calculate the factor of safety against sliding for a concrete
dam. The most popular and accepted method is the limit equilibrium approach that will be used in
this paper. In the limit equilibrium approach, the dam is considered to be a rigid body that is allowed
to slide along critical surfaces such as the base, lift joints or weakness planes in the foundation. The
safety is assessed by evaluating the force balance of the dam.

2.1 Criteria for sliding safety assessment

In the Swedish guidelines for dam safety, SwedEnergy [1], the safety factor against sliding is based on
the ratio between IH, the sum of the horizontal forces, and ZV, the sum of the vertical forces.
According to a comparison conducted by Ruggeri et al. [2], this type of criteria is only used in two of
the fourteen investigated countries. The criterion most commonly used is the ratio between the
driving forces and the available shear strength of the studied sliding surface.

The available shear strength of the sliding surface is in general represented by a Mohr- Coulomb
failure envelope. In its modern form, it is expressed according to equation 1.

T = ¢ + oy tan ¢ (1)

Where t1; is the shear stress at failure along the theoretical failure plane, c is the cohesion of the
plane, o\’ is the effective normal stress acting on the failure plane and g is the friction angle of the
failure plane. The factor of safety can then be calculated according to equation 2.

_c+oytang (2)
T

FS

Where T is the applied shear stress. This relationship holds locally, for each point of the potential
sliding surface. When the global safety of the dam is assessed, the applied normal and shear stresses
are integrated over the potential sliding plane, assuming that ultimate capacity is achieved at each
point of the sliding surface. The global safety factor is then expressed as

Tf c-A+Ntang¢ (3)
FS=—-=———
T T

where T; is the maximum resisting shear load, T is the applied shear load, N is the resultant of the
forces normal to the assumed sliding plane including the effects of uplift and A is the contact area. As
mentioned in Ruggeri et al. [2], a fully ductile behaviour has to be assumed for equation 3 to be valid.
However, the experimentally observed behaviour of a bonded sliding surface between concrete and
rock is not ductile. Tests conducted on concrete/shotcrete-rock cores by Saiang et al. [3], Lo et al. [4]
and Seidel & Haberfield [5] among others show that a semi-brittle response is a more correct
description of the observed behaviour. This leads to a model uncertainty related to the cohesive part
of equation 3.

Another uncertainty related to the cohesive part of equation 3 is in defining the magnitude of the
cohesion for a bonded or partially bonded concrete-rock interface. The strength parameters of the
interface between the dam and the rock foundation are commonly based on a limited number of
tests. However, the cohesion of the concrete-rock interface can vary over the surface. As a result,
there exists an uncertainty whether or not the test results are representative for the entire surface.



The common way of dealing with the above mentioned uncertainties in deterministic design is to
apply larger safety factors when both cohesion and friction are used. In this paper, the factor of
safety will be calculated according to equation 3, including the cohesive part.

3 Structural reliability analysis
3.1 Component reliability

Structural reliability analysis (SRA) is concerned with finding the reliability, R, or the probability of
failure, P;, of a feature, structure or system. When SRA is used, the reliability index, B, is the most
commonly used measure of the structural safety. The reliability index is related to the probability of
failure, P;, as shown by equation 4.

Pg = ®(—p) (4)

Where O is the cumulative standard normal distribution function. The probability of failure is given
by

P =p(G(X) <0) (5)

where G(X) is the limit state function.

As mentioned by Dalsgaard Sérensen [6], structural reliability methods are classified according to
level, moment and order. Level refers to the extent of information about the structural reliability
problem that is provided and used.

In level | methods, the uncertain parameters are modeled with a characteristic value. Examples of
such methods are codes based on the partial safety factor concept. Reliability methods which use the
mean values and standard deviations, supplemented by the coefficients of correlation, to model the
uncertain parameters are classified as level Il methods. In level Il methods, the uncertain parameters
are modeled by their joint distribution functions. The probability of failure is estimated as a measure
of the reliability in level Il and level lll methods. In level four methods the risk is used as a measure of
reliability since consequences (cost) are also taken into account.

Moment refers to the order of statistical moments applied to represent an uncertain variable and its
probability distribution. Order refers to the order of the polynomial applied for local approximation
of the limit-state surface. In first order reliability methods, the limit state function is linearized and
the reliability is estimated using level Il or Ill methods. In second order reliability methods, a
guadratic approximation to the failure function is determined and the probability of failure for the
guadratic surface is estimated.

In this paper, the probability of failure of the dam due to sliding is calculated using three different
reliability methods: the Taylor series method; the Hasofer-Lind method and Monte Carlo simulations.
A short explanation of each method is provided bellow. For a more thorough coverage the reader is
directed to textbooks in the subject such as Thoft-Christensen & Baker [7].

3.1.1 Taylor’s Series method of reliability analysis

The Taylor’s series method is a first order, second moment, FOSM, method based on Taylor’s series
expansion of the performance function about some point. It uses only second moment statistics,
mean and standard deviation, of the random variables. Since it is a first order method, only the first
order, linear terms of the Taylor series expansion are used.

In order to perform an analysis using Taylor’s series method, a limit state function has to be defined.
The limit state function, g*, for the analyses conducted in this paper is defined as



(6)

*

g:

R 1
S

where R is the shear resistance of the concrete-rock interface and S is the sum of the driving forces.
The expected value of the function, retaining only first-order terms, is the function of the expected
values:

Elg’]l = 9" (E[X1], [Xz], ... [Xn]) (7)

The variance of the probability distribution of g*, assuming correlated random variables, is calculated
as

. 9g*\? dg*dg* (8)
varlg') = 2 (5x) o +2 . 5%, ox; Pruci
i i j

i i#]j

where ¢’ is the variance of the random variable X, If the random variables are independent

equation 8 can be written as
9g*\? (9)
arlg] ax; O%;

i

First order derivates can be obtained straightforward if g* is a linear function. If it is not, the variance
term can be expressed using finite difference approximations of the derivates. The derivates are then
calculated numerically using a very small increment (positive and negative) centred on the expected
value. However, in these analyses the USACE [8] practise will be followed, meaning that a large
increment of one standard deviation will be used, see equation 10. This is done in order to capture
some of the behaviour of the nonlinear functions.

) _ 1 2 (10)
Var[g*] = Z (g(E[Xl] +0x,) : g(ELX] O'Xi)>

i

Having the expected value and variance of the performance function and assuming that the function
is normally distributed, the reliability index can be calculated according to equation 11.

Elg"] (11)

3.1.2 Hasofer-Lind reliability index

A problem with Taylor’s series method is its lack of failure function invariance (the reliability index
based on the linearized safety margin becomes dependent on the mathematical formulation of the
safety margin). This introduces an error of unknown magnitude to the analyses. The degree of error
depends on the degree of nonlinearity in the performance function and the coefficient of variation of
the random variables. A more general definition of the reliability index that does not exhibit the
invariance problem was proposed by Hasofer & Lind [9]. In their method, the limit state function is
evaluated at a point known as the “design point” instead of the mean or the expected values. The
design point is a point on the failure surface g*=0 that is generally not known a priori. In the general
case, an iterative solution must be used to find the design point.



Consider a limit state function g(Xy, X,,...,X,) where the random variables X; are all uncorrelated. The
first step in defining Hasofer and Lind’s reliability index is to rewrite the limit state function in terms
of the standard form of the variables which are defined by

_ Xi - MXi (12)

O'Xi

Ui

The failure surface in the new u-space is then given by
9" (ux, + ox,, kx, + 0x,, -, Hx, +0x, = ga(w) =0 (13)

The Hasofer-Lind reliability index B is defined as the shortest distance from the origin O in the u-
space to the failure surface, g,*(u)=0 and expressed according to equation 14. The Hasofer- Lind
reliability index will coincide with the reliability index B as defined by equation 11 when the failure
surface is linear.

(14)

The calculation of the Hasofer-Lind reliability index as defined by equation 14 can be undertaken in a
number of different ways. In this paper, the statistical software COMREL, RCP Consult [10], was used
in order to solve the problem presented in theme C.

3.1.3 Monte Carlo simulation

Monte Carlo simulation (MCS) is a numerical level Il method that provides a more accurate
evaluation of the probability of failure compared to level Il methods. It includes all the information of
the probability density function and not only the first two moments.

The following summary is based on the books of Baecher & Christian [11] and Ang & Tang [12] but
many other authors present similar material. A MCS starts with the generation of a random value for
each uncertain variable. Calculations are performed in order to yield a solution for that set of values.
This gives one sample to the process. Each new sample results from repetition of the numerical
process and may be considered a sample of a true solution analogous to an observed sample from a
physical experiment. Once a large number of runs have been completed, it is possible to study the
output statistically and to obtain values of means, variances, probabilities of various percentiles, and
other statistical parameters. The probability of failure for each failure mode is calculated according to
equation 15.

P; = p[G < 0] =% (15)

Where G is the limit state equation, n are the number of times G is below zero and N is the total
number of Monte Carlo realizations. The accuracy of the solution obtained through MCS will improve
with the sample size and may be measured by the coefficient of variation (c.0.v) of the solution.

(16)
Cov(P) =

Where P is the sample mean. Using equation 16, the error in percent of a Monte Carlo solution with
a given sample size n can be evaluated



(17)
error(in %) = 200

The problem presented in theme C was solved using MATLAB [13].
3.2 System Reliability

For a structure with several elements, or for one with several failure modes, the reliability has to be
considered for the entire system. There are two fundamental types of systems, namely series
systems and parallel systems. A system is a series system when the total system fails as soon as one
component of the system fails. If failure in a single component doesn’t result in failure of the total
system, then the system is a parallel system.

The probability of failure for an ideal series system can be expressed according to equation 18.
P¢ = P(F) = P(UF) = P(U{Gi(x) < 0}) = P({min G;(x) < 0}) (18)

The system reliability may be approximated by reliability bounds, but in this paper the system
reliability is approximated by integration of the bivariate normal density function. An approximation
of the safety index of a series system of two components is then given by:

Bsys = =@ 1 (Pp) = —d7H(1 — D,(B1, B2; P12)) (19)

where B, and B, are the reliability indices of limit state 1 and 2, respectively, p4, is the correlation of
coefficient between the elements or failure modes and @, is the bivariate normal distribution
function defined by

X X4 (20)
D, (X1, X25P12) = f f(Pz(tl'tziplz)detz

—00 —O00

where @, is the bivariate normal density function with zero mean given by

1 (21)

1
. _ _ 2, 42 _
P2(t1, t2;p12) = P exp ( 2(1— pp2) (&1 + 1 2P12t1t2)>

The coefficient of linear correlation, p, describes the dependency that can occur among failure
modes or elements of a system due to the same loads, building material etc and is for any pair of i-j
modes, given by

_ Covigi gl (22)

Pij
agi agj

in which Cov is the covariance of variables g; and g;and oy and o, are their standard deviations. The

coefficient of correlation, p;, can also be calculated by means of the sensitivity factors, a, of the
failure modes i and j according to equation 23.

= (23)
pij = z ik Ak, 1 # ]
k=1



4. Input
4.1 Geometry

The geometry of the dam is presented in Figure 1.
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Figure 1: Illustration of the concrete dam
4.2 Variables

In a deterministic analysis, all variables are considered deterministic which means that they are
represented by a single value since the value of each variable is considered to be known. However, in
a reliability analysis, two types of variables can be included, deterministic variables and random
variables. Random variables are variables described by statistical distributions which represent the
uncertainties of the variable, e.g. natural randomness and statistical uncertainty. In order to simplify
the analyses, only two random variables were considered in the performed reliability analyses;
cohesion, ¢, and friction, tan &, of the concrete-rock interface. All other variables were assumed
deterministic variables.

4.2.1 Resistance variables

Regression of the available observations was used in order to define the statistical distribution and
the moments for cohesion and friction. The friction was found to be normally distributed. An
assumption of normality for the cohesion variable would imply a significant probability of negative
values due to the large coefficient of variation. Therefore, a lognormal distribution was used. The
correlation between the variables is equal to -0.26. Assuming uncorrelated variables when a negative
correlation exists between two variables is a conservative assumption and simplifies the analyses.
Therefore, the correlation between friction and cohesion will not be accounted for in this paper. The
resistance parameters used in the analyses are presented in Table 1.

Table 1: Resistance parameters

Deterministic analysis Reliability analysis
Resistance Unit Notation Value Distribution Expected Standard
variables value deviation
Cohesion MPa c 0.37 Lognormal 0.48 0.40
Friction Deg. tan g 1.36 Normal 1.36 0.39
Unit weight  kN/m>  y. 24 Constant 24

concrete
Volume m V. 2463 Constant 2463




4.2.2 Load variables

Besides the self weight of the dam, the horizontal water load acting on the upstream face of the dam
and the uplift pressure acting on the base of the dam were included in the analyses. The model
considers the uplift distribution according to drain location and drain effectiveness as proposed in
theme C. The hydrostatic and uplift loads for each load case are presented in Table 2.

Table 2: Hydrostatic and uplift loads

Load Case Water level over Drains Hydrostatic  Uplift load
foundation [m] load [kN] [kN]

1 75 :E:;?Z:t?ve 28125 25?80

2 78 :E:;E;?;:c?ve 30420 523?;325*

3 w0 netece 290 0y

¢ m netecve B0 o

s & nettecme 125 3pages

*Adjusted uplift pressure due to tension crack

4.3 Limit State

In order to perform the analyses, a limit state has to be defined for the actual failure mode. The
failure mode studied in this study is sliding in the interface between concrete and foundation. In
order for the results to be comparative with those from the deterministic analyses, sliding occurs if
the load parallel to the sliding plane exceeds the shear resistance, T, of the plane. Also, the Mohr-
Coulomb failure criterion is used to define the shear strength of the interface. The limit state
function used in the Taylor series analyses is expressed according to equation 24.

c-A+ N-tan¢ L (24)
T

R
g'tang,c) =—=—1=
S
The limit state function used in the Hasofer-Lind analyses and Monte Carlo simulations is defined by

G(tang,c)=c-A+N-tan¢p — T (25)
4.4 System

In this paper, the dam is treated as one structural member with two components with probability of
occurring according to Figure 2. Since failure of the dam will occur if either failure mode occurs, the
system will be treated as a series system.

Failure of structure due to
sliding at the concrete-
rock contact

//' OR \\
| Ir |

Drains effective Drains ineffective
P,=0.90 P=0.10

Figure 2: Reliability of the system in theme C



5. Results
5.1 Deterministic analyses

The results from the deterministic analyses are presented in Table 3.

Table 3: Results from deterministic analyses

Load Case Water level over Drains Factor of
foundation [m] safety

Effective 3.25

! 7> Ineffective 2.56
Effective 2.99

2 /8 Ineffective 2.24
Effective 2.83

3 80 Ineffective 2.04
Effective 2.69

4 82 Ineffective 1.86

5 85 Effective 2.44

Ineffective 1.64

5.2 Reliability analyses
5.2.1 Component reliability

For each of load case, the conditional probability of failure and the coefficient of correlation between
failure modes were calculated using the three different methods described above. The results are
shown in Table 4-6.

Table 4: Results from analyses using Taylor series method

Load Case Water level over Drains Conditional Reliability Coefficient of correlation
foundation, H,, [m] probability of index, B between failure modes
failure, Py
Effective 8.63e-3 2.381
! 7> Ineffective 2.67e-2 1.931 0.987
Effective 1.11e-2 2.286
2 78 Ineffective 4.35e-2 1.711 0.980
Effective 1.32e-2 2.220
3 80 Ineffective 6.19e-2 1.539 0.974
Effective 1.57e-2 2.153
4 82 Ineffective 8.55e-2 1.369 0.967
Effective 2.24e-2 2.007
5 85 0.961
Ineffective 1.33e-1 1.114

Table 5: Results from analyses using Hasofer-Lind reliability index

Load Case Water level over Drains Conditional Reliability Coefficient of correlation
foundation, H,, [m] probability of index, B between failure modes
failure, Py,
Effective 2.60e-3 2.794
1 75 Ineffective 6.71e-3 2.473 0.990
Effective 3.68e-3 2.680
2 /8 Ineffective 1.31e-2 2.224 0.990
Effective 4.64e-3 2.601
3 80 Ineffective 2.16e-2 2.022 0.983
Effective 5.86e-3 2.520
4 82 Ineffective  3.52e-2 1.809 0.985
Effecti 9.11e-3 2.361
5 85 ective € 0.975

Ineffective 7.08e-2 1.470




Table 6: Results from analyses using Monte Carlo Simulations

Load Case Water level over Drains Conditional Reliability Coefficient of correlation
foundation, H,, [m] probability of index, B between failure modes
failure, Py
Effective 5.83e-4 3.247
1 7> Ineffective 0.0011 3.066 0.988
Effective 8.55e-4 3.136
2 ’8 Ineffective 0.0022 2.855 0.981
Effective 0.0011 3.057
3 80 Ineffective  3.60e-3 2.688 0.974
Effective 0.0014 2.983
4 82 Ineffective  0.0062 2.500 0.967
Effective 0.0023 2.837
> 8 Ineffective  0.0141 2.193 0.960

system reliability, the conditional probability of failure was multiplied with the probability of
occurrence of the case, according to equation 26.

P¢ = P(E; N E) = P(E1)P(E) (26)

Where E; is the event of conditional failure and E, is the event of the drains being effective or
ineffective.

5.2.2 System reliability

The safety index for the entire system (drains effective — drains ineffective) was calculated for each
water level. The results are presented in Table 7.

Table 7: Results from analyses using Monte Carlo Simulations

Taylor series method Hasofer-Lind Reliability index = Monte Carlo simulations
Water level over Conditional  Reliability Conditional Reliability Conditional  Reliability
foundation, H,, probability index, B probability index, B probability index, B
[m] of failure, P; of failure, P; of failure, P;
75 7.79e-3 2.42 2.34e-3 2.83 5.25e-4 3.28
78 1.03e-2 2.32 3.33e-3 2.71 7.79%-4 3.16
80 1.27e-2 2.24 4.41e-3 2.62 0.0010 3.08
82 1.58e-2 2.15 5.89%e-3 2.52 0.0014 2.98
85 2.33e-2 1.99 1.06e-2 231 0.0026 2.80

In order to obtain the probability of failure, P; for each load case for use in the evaluation of the

6. Discussion

The methods available for SRA are in varying stages of accuracy. Of the three reliability approaches
used in this paper, the Taylor series method is considered the most inaccurate while Monte Carlo
simulations provide the most accurate estimations of the probability of failure. It can be seen in
Table 7 that the Taylor series method underestimates the safety of the dam for all load cases
compared with the Monte Carlo simulations.

When the sliding stability of concrete dams is evaluated using SRA a lot of uncertainties of unknown
magnitude arise. Most of them are related to the shear strength of the concrete- rock interface. Itis
not accurate to assume that a bonded interface loses its load-bearing capacity completely after
“failure”. As mentioned earlier, tests performed by several researchers indicate that a semi-brittle
behaviour is closer to reality. However, it is unclear how this affects the global sliding stability of the
dam. Another difficulty that arises is to define the cohesion of a bonded or partly bonded interface,
since it has a spatial variation and the number of tests is in general limited. In order for a SRA to be
reliable, all related uncertainties have to be identified, quantified and included in the analysis.



In this study, the correlation between the cohesion and friction angle was not accounted for. This
limitation was chosen in order to simplify the calculations. However, it is likely that including the
observed negative correlation between the shear strength would increase the reliability of the
structure.

The correlation between the components of the system was calculated and included in the analyses.
As can be seen in Tables 4 to 6, the failure modes of the system in theme C are strongly correlated.
This increases the reliability of the system.

Although it is important to recognize the limitations and uncertainties related to SRA, it should also
be recognized that many of these limitations are shared with traditional, deterministic methods.

7. Conclusion

SRA is not widely used in dam engineering at this time. Further research is needed in order to define
and quantify the uncertainties related with SRA. However, practical dam safety decisions should be
made using the best available information so reliability based analyses can be used as a support to
traditional deterministic approaches when necessary.
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Summary

An analysis of dam-foundation system with reliability-based technique is presented. Four cases of
uplift pressure are considered. Safety factors for several water levels are calculated. Probabilities of
failure using several methods of second and third levels of reliability theory re obtained. Third level
method involves simulations which were performed with usual Monte-Carlo technique and its
variation — Latin Hypercube. Several distributions of random variables are considered.
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1. Introduction

Estimation of safety and reliability of hydraulic structures, and particularly dams, is one of the most
topical technical problems in dam engineering. There are a lot of methods for reliability analysis,
which provide quite powerful and practically suitable instruments for engineering decision-making.
One faced to the problem of reliability analysis have to deal with probability of failure, which is a
conditional probability for certain loading conditions. The methods of probability of failure
estimation are usually grouped in three levels. The solution presented herein was provided for
certain failure mode (sliding of dam along the dam-foundation contact) and carried out using
methods of all three levels.

2. Model formulation and considerations

The geometry of the dam is shown in figure 1.

80

60

Figure 1: Dam geometry (m)

The assumed material properties are given in table 1.
Table 1.- Data for dam and foundation materials

Material parameters Dam Foundation
Young’s modulus (MPa) 24000 41000
Poisson’s ratio 0.15 0.10

Mass density (kg/m?>) 2400 2700
Compressive strength (MPa) 24 40

Tensile strength (MPa) 1.5 2.6

Strain at peak compressive strength 0.0022 0.0025
Strain at end of compressive softening curve 0.10 0.15
Fracture energy (N/m) 150 200

Two-dimensional limit-equilibrium model was used to analyze the stability of dam. Model is simple,
well-known and well-behaved, that allows focusing on estimation of probability of failure.

The model based on relationships between driving force and shear strength. Evaluation of them can
be carried out using equation (1) and (2):

1
S= Epwghz, (1)



where p,, is the density of water, g — gravity acceleration (taken as 10 m/s°) and h is water level.
R=(N—-U)tgp + B Xxc, (2)

where N is the sum of vertical forces acting on the dam-foundation contact surface, U is the uplift, B
is the area of the dam-foundation contact surface, @ is the friction angle in the contact, and c is the
cohesion in the contact.

The uplift pressure depends on both water level and groundwater proof (grout curtain and drain).
Presence of crack along the dam-foundation contact also influences the uplift. The four cases
considered herein are shown in the figure 2.

Case A: Case B:
no drain, no crack eff. drain, no crack
drain
axis
P P 0.2P
Case C: Case D:
eff. drain + crack no drain, but crack

Pl [No.2p P

Figure 2: Four cases of uplift pressure

The distance between crack tip and upstream face (i.e. crack length) were estimated by finite
element method.

3. Crack length estimating

Estimating of the crack length is very complicated problem itself. Even if can suggest the direction of
the crack propagation (like in the case of the dam-foundation contact crack), the fracture properties
of the interface between concrete and foundation often still obscure. Traditionally estimating of
crack length is based on linear or non-linear elastic fracture mechanics or any of the so-called
“traction-separation” models. On of such traction-separation models, provided by Alfano and
Criesfield [2], were used during this research.



This model is implemented in release of ANSYS program as “Cohesive zone model” (CZM) and is to be
used with contact elements. The model states relationships between contact pressure in the
“process zone” near crack tip and crack opening (or gap between sides of the crack), like shown in
figure 3.

Contact pressure,

MPa A

O-max‘
0.251
0.20

0.15 |
0.10 | GC

0.05 - (51 62 (C)

00 e
0 0.0001 0.0003  0.0005  Gap,m
O 0.0002 0.0004  0.0006

Figure 3: Bilinear cohesive zone material model

Model shows linear elastic loading (OA) followed by linear softening (AC). The maximum normal
contact stress is achieved at point A. A process called debonding begins at point A and is completed
at point C when the normal contact stress reaches zero value. Any further separation occurs without
any normal contact stress. The area under the curve OAC is the energy released due to debonding
which is usually called the critical fracture energy. This considerations were provided for so called
“Mode | debonding”, in the sense that separation occurs in the direction normal to the interface. The
same considerations should be applied to taking into account tangential direction, and similar
parameters should be set (but, in general, with other values).

Hereby, there are four parameters in the model: G, Omay Go, Tmax. Values of these parameters are to
be discussed, because, as were mentioned earlier, the properties of the interface itself are unknown.
Taking into account that this is not the subject of this paper, for the sake of simplicity these
parameters were taken for granted from Alfano et al. [3]. In that paper these values were provided
for the benchmark considered herein: G.= 90 J-m?, G,.= 0.3 MPa, G, = 350 J-m™, Trna =0.7 MPa.

The modified finite element mesh is shown in figure 4.
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o it

Figure 4: Finite element mesh



Crack opening diagram for water level of 85 m is shown in figure 5.
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Figure 5: Diagram of crack opening (water level = 85 m)
The series of analyses resulted in values of crack length for several water levels and for two cases of
drain effectiveness. These values are shown in table 2.

Table 2: Crack length versus water level

Water level, m 100 % eff. of drain 0 % eff. of drain
75 5 7
78 11 12
80 12 13
82 13 15
85 15 18

In fact, these values are quite approximate, but they are suitable in this particular analysis.

4. Interpretation of samples

In accordance with provided data, two of the design variables considered as random: friction angle
and cohesion at the dam-foundation interface. Available information consists of 15 pairs of values,
shown in table 3.

Table 3.- Data for friction and cohesion at the interface

Friction Cohesion Friction Cohesion
Sample Sample

angle (2) (MPa) angle (2) (MPa)
1 45 0.5 9 49 0.1
2 37 0.3 10 60 0.2
3 46 0.3 11 63 0.2
4 45 0.7 12 62 0.4
5 49 0.8 13 60 0.7
6 53 0.2 14 56 0.1
7 54 0.6 15 62 0.4
8 45 0.0




Analyzing this data with simple statistical tools, it is possible to obtain the most important statistics —
sample mean and sample variance.

X — {VZIXL'
N (3)
62 _ {V—l(Xi - X)
T N-1 (4)
Results are shown in table 4.
Table 4.- The most important sample estimates
Water level, m o®,° C, MPa
X 52.40 0.367
o 63.83 0.061
c 7.99 0.246

These values are used through the paper. They are especially important in second level methods,
where they are used for calculation of first two moments of probability distribution of the
performance function.

For execution of third level methods it is needed to obtain (or suggest) how the performance
function is distributed. For this purpose histograms are plotted (figure 6 and 7).
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Figure 6: histogram and adjusting curves for friction angle

It is shown in [4] that good choise of adjustment function for friction angle is beta distribution
because it can be limited, and values of friction angle a located within range. The range of 10 to 70
degrees was chosen.

And cohesion can be adjusted by lognormal distribution which is defined in the positive interval
(0 <g* < +w).
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Figure 7: Histogram and adjusting curves for cohesion

The location of sampling points in (¢,c) axis is shown in figure 8.
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Figure 8: Sampling points in (¢,c) axis

o

It is suggested that there is no correlation between this variables, although in article of R. Jimenez-
Rodriguez [4] wrote, that there is slight negative correlation.

4. Probability of failure estimating

As were mentioned, three groups of reliability analyses methods usually are sorted out also called
“levels”. Methods of first level are concerned with safety factors evaluation. Methods of second level
are often called “second moment” methods, because they use only first two moments of the joint
probability density function. Methods of third level provide the most accurate probability of failure,
but it concerned with numerical integration and simulations, which can be difficult for complex
problems.

The analysis of probability appears for systems that contain uncertainties. In current model
uncertainty was provided by considering two parameters as random variables - friction angle and
cohesion at the dam-foundation interface.

Methods of theory of reliability based on consideration that the structure mustn’t reach the limit
state — state, which not allow operating the structure normally.



For implementation of reliability methods mechanical model is needed. If there are n variables
forming a vector (X3,X,,...,X,) in n-dimensional space, it is possible to derive mechanical model as
a function of strength r(x4,x,,...,X,) and loading s(x4,X,,...,X,) function:

_ 1(Xy, Xz, -, Xp)

X1, X9, e, Xp) = 3
g( vz 1’1) S(XI'XZ' ---!Xn) ( )
Then limit state equation can be written as follows:
. r(Xq, Xz, o, Xp)
g" (X4, Xg, v, Xp) = (X1, Xg, ey Xp) — 1 = -1 (@)

" s(Xq, Xg) ey Xp)

It defines limit-state region as an n-dimensional hyper surface, which divides n-dimensional space
into failure domain and safety domain.

The failure domain in the n-dimensional space is defined as:

g (Xq,X2, s Xp) <0 (5)

So, one can find out if the function g*(xy,X,,...,X,) of certain variable values (also called representative
values) is located in failure domain, or calculate the probability of failure as integral over the failure
domain of the joint probability function of all random variables:

Prlg* (X1, X2, ..., Xp) < 0] = f £, Xy, %y (X1, X2, wor, X)) dXqdX5 oo dXy (6)
g*(X1,X2,..oXn)<0
4.1. Methods of first level. Global safety factor
Safety factors are widely used in common practice of structural safety assessment.

Taking into account eq.(1),(2) and (3) one can write the expression for mechanical model of current
problem.

r(c,cp)_l_(N—U)tg(,0+B><c_1

s(c, @) S ()

glc,p)—1=

It is possible to write limit state equation:

r(c, @) (N-U)tgp +B xc (8)
* ) = " — 1 = — 1 = —_ 1
g"(c,9) =g(c ¢) ) S
This equation could be transformed:
S+BXc
o= (Gr=gy) ?

As the considered case is simple and we have only two design variable, we can represent limit state
region as a curve and plot it graphically in the (¢,c) plot. Four curves for different cases, stated In
section 2 of this paper, but for certain water level (85 m) are shown in figure 9.
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Figure 9: Limit-stated curves for different cases of uplift (water level = 85 m)

Values of safety factors were obtained for four cases, results are shown in table 4:

Table 5: Global safety factors for four cases

Water level, CASE A CASEB CASE C CASE D
m
75 1.53 2.03 1.85 1.27
78 1.39 1.86 1.69 1.14
80 1.30 1.76 1.60 1.06
82 1.22 1.67 1.51 0.99
85 1.11 1.55 1.39 0.89

The main shortcoming of this method is that limit values of safety factors stated in regulatory rules
(or codes) are often chosen with being based on experience. Result of this is a situation that nobody
knows indeed if the structure is safe or not, and if it is safe, if the value of safety margin is
unreasonably excessive or not.

4.2. Methods of second level. Firs Order Second Moment

The name of these methods caused by the fact that the function g*(xy,x,,...,x,) is approximated
linearly and only first two moments of the joint probability density function are considered. At the
output of analysis the reliability index, B, is usually obtained. Its meaning (distance between the most
probable value and the failure domain) gives us a relative measure of reliability, but it doesn’t tell us
anything about the probability of failure by itself.

As (Xy,X,,...,X,) are random variables, g*(x,X,,...,Xn) is @ random variable with certain distribution,
usually unknown. For probability of failure estimation one should suggest the shape of this
distribution.

Hereinafter values of reliability index and probability of failure are given, computed using three
different methods.



4.2.1. Taylor’s series method

Method based on expansion of performance function into Taylor’s series about the expected value.
Then only linear elements are taking into account during calculation of first two moments of the
probability distribution of performance function [1].

Table 6: Values of reliability index and probability of failure for Taylor’s series method

Water CASE A CASEB CASE C CASED

level, m B ®(-B) B ®(-B) B ®(-B) B ®(-p)
75 2.013 0.022074 2.420 0.007754 2.357 | 0.009221 | 1.902 | 0.028555
78 1.866 0.031003 2.320 0.010173 2.151 | 0.015729 | 1.635 | 0.051027
80 1.764 0.038862 2.250 0.012210 | 2.059 | 0.019765 | 1.496 | 0.067289
82 1.658 0.048650 2.179 0.014666 1.964 | 0.024793 | 1.332 | 0.091425
85 1.492 0.067854 2.068 0.019322 1.808 | 0.035301 | 1.075 | 0.141208

4.2.2. Point estimate method

The point estimate method determine the first two moments of the performance function g* by the
discretization of the probability distributions of the random variables (X1,X5,...,X,). This discretization
is made in a few points for each random variable (two or three points), where mass probability is
concentrated in such a fashion that the sum of the probabilities assigned to each point is 1 for each
random variable (Rosenblueth [5]). In the more general approximation, the method determines the
third moment of the distributions, which allows analysis with skewed (asymmetrical) distributions.
Random variables can be independent or correlated.

Table 7: Values of reliability index and probability of failure for point estimate method

Water CASE A CASE B CASE C CASE D

level, m B ®(-B) B ®(-B) B ®(-B) B ®(-B)
75 2.139 0.016212 2.566 0.005140 | 2.504 | 0.006133 | 2.032 | 0.021070
78 1.991 0.023237 2.466 0.006840 | 2.394 | 0.008334 | 1.863 | 0.031256
80 1.888 0.029531 2.396 0.008290 | 2.317 | 0.010242 | 1.744 | 0.040596
82 1.781 0.037488 2.324 0.010057 | 2.238 | 0.012597 | 1.620 | 0.052598
85 1.613 0.053404 2.213 0.013455 | 2.115 | 0.017195 | 1.425 | 0.077015

4.2.3. Hasofer-Lind method

In [7] it is shown that reliability indexes obtained with first two approaches is not invariant to form of
the performance function. So, Hasofer and Lind developed another reliability index, which is
invariant.

Table 8: Values of reliability index and probability of failure for Hasofer-Lind method

Water CASE A CASE B CASE C CASED

level, m B ®(-B) B ®(-B) B ®(-B) B ®(-B)
75 2.230 0.012870 2.905 0.001835 | 2.767 | 0.002826 | 2.088 | 0.018402
78 2.104 0.017675 2.711 0.003349 | 2.567 | 0.005124 | 1.884 | 0.029768
80 2.052 0.020079 2.577 0.004986 | 2.451 | 0.007119 | 1.744 | 0.040581
82 2.027 0.021313 2.458 0.006989 | 2.351 | 0.009354 | 1.600 | 0.054779
85 2.042 0.020586 2.318 0.010214 | 2.223 | 0.013112 | 1.378 | 0.084140




4.3. Methods of third level. Simulation

Monte-Carlo method is described in details in wide scope of literature (for example, [7]). Another
method is Latin Hypercube method [6], which is similar to Monte-Carlo, but the sampling is stratified.

Results for Monte-Carlo sampling with consideration that both variables are normally distributed are
shown in figure 10.
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Figure 10: Monte-Carlo sampling. Both variables are normally distributed

One can see that for large number of samples the cohesion value is negative which is physically
incorrect. So it is better to consider cohesion to be lognormally distributed.

Figure 11 shows sampling for normally distributed friction angle and lognormally distributed
cohesion.
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Figure 11: Monte-Carlo sampling. Normally distributed friction angle and lognormally distributed
cohesion
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Another way is to consider that friction angle is distributed according to beta distribution (figure 12).
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Figure 12: Monte-Carlo sampling. Beta distributed friction angle and lognormally distributed

cohesion

Obtained probabilities of failure for all three cases illustrated above are provided in tables 9,
10 and 11, respectively (“WL” in caption means water level, MC-Monte-Carlo, LHS — Latin
Hypercube).

Simulation was done for number of samples =1000000.

Table 9: Results of simulation for NORMAL-NORMAL case

CASE A CASE B CASE C CASE D
WL, m MC LHS MC LHS MC LHS MC LHS
75 0.011798 | 0.011681 | 0.001016 | 0.001005 | 0.002725 | 0.002755 | 0.023271 | 0.023170
78 0.018289 | 0.018333 | 0.001742 | 0.001745 | 0.004209 | 0.004182 | 0.040213 | 0.040116
80 0.024435 | 0.024370 | 0.002476 | 0.002483 | 0.005645 | 0.005537 | 0.056895 | 0.056832
82 0.032467 | 0.032376 | 0.003467 | 0.003486 | 0.007460 | 0.007273 | 0.079062 | 0.079152
85 0.049093 | 0.049167 | 0.005841 | 0.005714 | 0.011140 | 0.011088 | 0.125456 | 0.126011
Table 10: Results of simulation for NORMAL-LOGNORMAL case
CASE A CASE B CASE C CASE D
WL m e LHS MC LHS MC LHS MC LHS
75 0.000454 | 0.000469 | 0.000046 | 0.000041 | 0.000038 | 0.000038 | 0.004666 | 0.004709
78 0.001516 | 0.001538 | 0.000132 | 0.000111 | 0.000118 | 0.000103 | 0.013894 | 0.013823
80 0.003140 | 0.003188 | 0.000238 | 0.000222 | 0.000231 | 0.000227 | 0.026478 | 0.026397
82 0.006302 | 0.006300 | 0.000444 | 0.000449 | 0.000438 | 0.000455 | 0.046934 | 0.047094
85 0.015626 | 0.015595 | 0.001095 | 0.001133 | 0.001173 | 0.001196 | 0.099223 | 0.099393




Table 10: Results of simulation for BETA-LOGNORMAL case

Water CASE A CASEB CASE C CASED

level,
vm Y[ LHS mC LHS mC LHS MC LHS
75 0.001019 | 0.001030 | 0.000101 | 0.000110 | 0.000082 | 0.000089 | 0.007723 | 0.007684
78 0.002879 | 0.002907 | 0.000293 | 0.000285 | 0.000251 | 0.000257 | 0.019243 | 0.019280
80 0.005444 | 0.005377 | 0.000604 | 0.000535 | 0.000503 | 0.000500 | 0.033174 | 0.033041
82 0.009698 | 0.009631 | 0.001108 | 0.001041 | 0.000921 | 0.001008 | 0.054138 | 0.053940
85 0.021000 | 0.020870 | 0.002558 | 0.002447 | 0.002214 | 0.002386 | 0.102778 | 0.103354

4. Conclusions

The safety assessment of dams is an urgent question to discuss. The modern probability-based
approach for this is reliability estimation.

Method of safety factor (level 1) is a convenient tool for practical engineers, but it doesn’t tell us
anything about probability of failure. It should be noted that presence of drain influence the uplift
and, then, can highly impact the factor of safety.

Methods of FOSM (level Il) are good alternative to estimation of safety factor, because they are not
concerned with complex computations and, on the other hand, provide us the probability of failure.

Method of simulation is a powerful tool to obtain the probability of failure with high precision, but
large number of samples is needed, which may be concerned with high computational effort if the
performance function is complex and there are several variables distributed in accordance with
different laws (not only Gaussian). But modern computers (and their power increasing is going on)
allow us to solve problems of large dimensionality in reasonable time period.

Here is some points to make more accurate in the future:

e Given sample set is scarce and it is difficult to obtain non-biased statistics for such a little
number of samples. It is necessary to do some more tests or to involve some more smart
methods then simple statistical tools

e |t is necessary to try different distribution laws to find out which one is more suitable for
sample set histogram adjusting

e It is necessary to derive performance function distribution to make possible numerical
integration for obtaining exact value of probability of failure

e Correlation between random variables should be taken into account

Acknowledgements

I’'m indebted to Elena A. Andrianova for her helpful remarks and to Olga I. Belyaeva for her English
lessons.

References

[1] Luis Altarejos Garcia (2008). Assessment of the sliding failure probability of a concrete gravity
dam.

[2] Alfano, G. and Crisfield, M.A. (2001) Finite Element Interface Models for the Delamination
Anaylsis of Laminated Composites: Mechanical and Computational Issues", International Journal
for Numerical Methods in Engineering, Vol. 50, pp. 1701-1736

[3] Alfano G., Marfia S., Sacco E. (2004) Influence of water pressure on crack propagation in
concrete dams. In: Proceedings of European Congress on Computational Methods in Applied



[4]
(5]
6]
[7]
(8]

Sciences and Engineering.

Jimenez-Rodriguez, R., Sitar, N., Chaco’n, J. (2006) System reliability approach to rock slope
stability. International Journal of Rock Mechanics & Mining Sciences, vol.43, pp. 847-859
Rosenblueth, E. (1975) Point estimates for probability moments. In: Proceedings of the National
Academy of Science, USA, 72 (10)

Iman, R.L.; davenport, J.M.; Zeigler, D.K. (1980) Latin Hypercube Sampling Technical Report
SAND79-1473. Sandia Laboratories. Albuquerque

Spaethe, G. (1994) Nadiozhnost’ nesushchikh stroitel’'nykh konstruktsij (Reliability of
load-carrying civil structures), Moscow, Strojizdat (in Russian - translation from german)
Ventsel E. (1999) Theory of probability. Moscow, “Highschool”



X1 1COLD BENCHMARK WORKSHOP ON NUMERICAL ANALYSIS OF DAMS

Valencia, October 20-21, 2011

THEME C
Cabrera Carpio, Miriam Mercedes’

Jimenez-Rodriguez, Rafael

CONTACT

Cabrera Carpio Miriam Mercedes, Technical University of Madrid, E.T.S.I. Caminos, Canales y Puertos
(Geotecnia), c/Profesor Aranguren s/n (28040, Madrid, Spain), Phone: +(34) 913366772 (ext. 111),
mmcc90@gmail.com.

Summary

This article presents the evaluation of different methods of analysis to estimate the conditional
probability of sliding failure of a gravity dam, in which we consider the possibility of having the
presence of a crack on the dam-foundation contact. The stability of the dam against its sliding
failure mode is modeled using limit equilibrium analysis, assuming the dam's behavior as rigid
body, and considering the dam-foundation interface as the potential sliding surface. A simple
methodology to estimate the characteristic parameters involved in the calculations is
presented; and several methods are employed to assess the probability of failure of the dam.
Such methods include Level | methods (Estimation of the safety factor); Level Il methods
(FOSM, Taylor's series); and Level lll methods (Simulation, Monte Carlo Method). Results
computed with the different methods are compared and briefly discussed.

! Technical University of Madrid, E.T.S. Caminos, Canales y Puertos (Geotecnia), Madrid, Spain



1.Introduction

In any risk management strategy, it is necessary to assess and quantify the relevant risks (i.e.,
probabilities of failure and their consequences) associated to different failure modes so that,
based on such analysis, we can decide the actions to implement preventive and protective
measures that may decrease their probability of occurrence or their consequences in case of
failure.

In the case of dams, each structure has unique conditions and characteristics. Because of such
individual character, the task of standardizing risk management practices for dam construction
and management has not yet been completely developed. For instance, traditional procedures
for quantitative risk analysis in the context of dams have been related to the direct verification
of safety factors; more recently, there has been an increasing interest to incorporate risk
management techniques from other disciplines, as a way to complement our analytic
capabilities, and to help us achieve a better understanding of the behavior of the dam in its
environment.

This article aims to compare the results of the analysis of the probability of failure of a specific
example dam by some of the more commonly used methods for analysis (level |, Il and lll). To
that end, we study a specific gravity dam, with given loads and boundary conditions, that has
been proposed as a benchmark problem.

2.Formulation of the Theme

For the sake of completeness, below we present a brief summary of the main geotechnical
characteristics and mechanical properties of the proposed dam and of its foundation.

2.1. Geometry of the dam

The geometry of the dam considered in this Benchmark problem is shown in Figure 1:
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Figure 1. Geometry of the dam



2.2. Materials properties
The material properties of both the dam and its foundation are shown in Tables 1 and 2:

Table 1. Data for dam and foundation materials

Materials Parameters Dam Foundation
Mass density (kg/m3) 2400 2700

Friction angle and cohesion at the dam-foundation interface are considered as random
variables. Available data in the form of fifteen pairs of values are given in Table 2.

Table 2. Data for friction and cohesion at the interface

Sample Friction angle (2) Cohesion (Mpa) | Sample Friction angle (2) Cohesion (Mpa)
1 45 0.5 9 49 0.1

2 37 0.3 10 60 0.2

3 46 0.3 11 63 0.2

4 45 0.7 12 62 0.4

5 49 0.8 13 60 0.7

6 53 0.2 14 56 0.1

7 54 0.6 15 62 04

8 45 0.0

2.3. Loading

The considered loads are self-weight, hydraulic pressure acting on the upstream face of the
dam and uplift acting on the base of the dam. Development of a crack at the interface should
be addressed by participants and uplift pressure should be evaluated accordingly.

Two cases of drain effectiveness are considered, with discrete probabilities associated:

e Case A: Drains effective (probability of 0.90)
e Case B: Drains not effective (probability of 0.10)

3.Problem
3.1. Part 1: (Level 1)

Participants should generate at least one model of behaviour for the dam and calculate the
factor of safety against sliding for the 5 water levels: 75, 78, 80, 82 and 85 meters over dam-
foundation contact plane.

3.2. Part 2: (Level I1)

Estimate the probability of failure using Level 2 reliability methods for the 5 water levels given
above. At least results with the First Order Second Moment (FOSM) Taylor’'s series
approximation should be provided.

3.3. Part 3: (Level 1ll)



Estimate the probability of failure using the Level 3 reliability method Monte Carlo simulation
for the 5 water levels given above.

4.Proposed solutions

To solve the Benchmark problem above, we carry out a limit equilibrium analysis of the dam
assuming a rigid body behavior and considering the sliding failure through the dam-foundation
interface as the only possible failure mode. It is important to emphasize that although plane
failure is the only failure mode considered herein, there are other failure modes that could
affect a gravity dam there are considered herein.

4.1. Analysis of the random variables involved

We start estimating the statistical distributions to characterize the strength parameters of the
foundation rock. To that end, in Figure 2 we plot the values of cohesion (c) and of the tangent
of the friction angle (tand), which are derived from laboratory tests (Table 2). Using this
graphic representation we can infer if there is some correlation between these variables, and
we can also fit the marginal frequency histogram of each variable to a distribution function.

As shown in figure 2, there is not a clear correlation between variables ¢ and tand; therefore
they are considered as independent variables.
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Figure 2. Representation of frequency histogram adjustment to an approximate distribution
function. ( = = = Lognormal distribution, Normal distribution).

Once that the distribution types to be used are defined, we can obtain the probability density
functions for each variable (¢ and tand) which will be subsequently used for the level lli
analysis. In the case of cohesion, the distribution function used to fit the frequency histogram
was a Lognormal, while for tand we used a Normal distribution. The lognormal distribution has



the advantage that it avoids negative values, and for that reason it is commonly employed to
model cohesion (see e.g., Jiménez-Rodriguez et al [6]); similarly, we model tan¢ (instead of ¢)
as a random variable because it is the value that actually enters into the stability model (see
Eq. (17) below). (The beta distribution has been employed in some cases to model friction
angle because it is bounded; see Jiménez-Rodriguez et al [5, 6] for details. However, for
simplicity and to keep our model closer to the assumptions of the FOSM method, we chose to
employ the normal distribution for our analysis in this case.)

The lognormal distribution employed to model cohesion is defined by the probability density
function given by equation (1). Such probability density function has been plotted in Figure 2
once that the distribution is fitted to the available data. Similarly, the cumulative distribution
function of cohesion is presented in Figure 3.
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Figure 3. Cumulative distribution function for Cohesion parameter.

The normal distribution used to model the tand parameter has a probability density function
given by equation (2). (Once fitted, it has been plotted in Figure 3). The corresponding
Cumulative density function of tang values is presented in Figure 4.
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Figure 4. Cumulative distribution function for Tang parameter.
Where:

X, represents the random variable, u is the statistical mean value, and o is the standard
deviation.

4.2. Estimation of characteristics strength parameters for level Il analysis

Based on the available series of fifteen tests which have generated fifteen pairs of values
(cohesion and fiction angle), we proceed to estimate the characteristic value for each
parameter so that we can late use such values for the analysis required. To do this, three
methods have been employed (see below); the final characteristic value will be taken as the
average of the three methods employed.

4.2.1. Eurocode Method

The Eurocode 7 defines the characteristic value as “a cautious estimates of the value affecting
the occurrence of the limit state”. Eurocode 7 also recommends that characteristic values
should be selected with 95% confidence, Eurocode 7 [7].

Xk,sup = Xm (1+kn'vx) (3)

Xk,inf :Xm(l_kn'vx) (4)
Where:
Xm: is the parameter’s mean value.

K,: is a statistical coefficient that depends on number of data points available (n) and if the
variation coefficient is “known” or “unknown”

Vx: Variation coefficient, obtained by the expression:
v, = 2x
m (5)

>

where, o, Is the standard deviation calculated by the equation:



(6)

Equations (3) and (4) are employed in cases of using a Normal distribution function. For a
Lognormal distribution function the equation becomes, Eurocode [8]:

-KnS
Xk,inf =e(my n v) )

where:

1
=y i
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_ |1 2

s

n (9)

Figure 5 shows the variation of K, with the number of samples. Depending on the line selected,

the coefficient that can be used to compute characteristic value corresponding to 5% and 50%
percentile.
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Figure 5. Statistical coefficients for determining the 5 an 50% percentiles with 95% confidence.
Bond [1].

The expression used to determine the statistical coefficient k, is given by Bond [1]:
— +95% |1
Kn tn—1 A (10)

Tzé{% is student’s t- value for (n-1) degrees of freedom at a confidence level of 95%.

where
To estimate the strength along the potential failure surface, we employed the 50% percentile
line. This is because for limit states in which the strength of the ground is mobilized over a
relatively large scale, the characteristic value can be considered as the mean value of the



strength mobilized along the failure plane. In such cases, it is usual practice to take as
characteristics values the average of the parameter, Bond [1].

Additionally, the lower limit expression given by Eq. (4) has been used to determine the
characteristic strength values to adopt a conservative approach.

4.2.2. Method of “Guia de Cimentaciones de Carreteras”:

According to this guide, the characteristic value of a geotechnical parameter is equal to the
mean value X, of all the samples, multiplied or divided by a coefficient §, DGOC [3]:

Xisup =X (11)
X
Xiinf = —+
£ (12)

The coefficient { depends on the type of parameter, on soil heterogeneity and on the number
of tests performed to obtain de mean value X,,. Table 3 shows possible values of ¢ for some
geotechnical parameters in soil with “mean” heterogeneity.

Table 3. Values of coefficient €. (DGOC [3])

Number of data used for mean value

Parameter Symbol

n=1 n=2 n=4 n=9
Unit weight Y 1.05 1.03 1.00 1.00
Tangent of friction angle Tang’ 1.15 1.10 1.05 1.00
Effective Cohesion c 1.20 1.15 1.10 1.05
Undrained shear strength Su 1.25 1.18 1.12 1.07
Unconfined compressive strength, soils  qu 1.30 1.20 1.15 1.10
Unconfined compressive strength, rocks Rc 1.60 1.40 1.30 1.20

In this case, the equation that generates the lower characteristic value was also used to adopt
a conservative approach. Because the values are achieved by fifteen samples of each
parameter (c and tan ¢), the coefficient  takes the value 1,05 and 1,00 respectively (see table
3).

4.2.3. Schneider method:

According to Schneider [10], the characteristic value X, corresponds to the best estimate of the
statistical average of the unknown parameter. The simplified expression for estimating the
characteristic value is Schneider [10]:

Xk,sup :Xm +K0x (13)

Xk,inf :Xm _Kox (14)

Where the K coefficient takes the value 0,50. This approximation generates characteristics
values with a reasonable precision and is valid for different distributions commonly used in



geotechnical engineering. Table 4 shows the results obtained by the three methods explained
above.

Table 4. Results for the estimation of the characteristics values of geotechnical parameters.

Cohesion

Sample Friction Angle (9) (Mpa) Tan(o)
1 45 0,5 1,000
2 37 0,3 0,754
3 46 0,3 1,036
4 45 0,7 1,000
5 49 0,8 1,150
6 53 0,2 1,327
7 54 0,6 1,376
8 45 0 1,000
9 49 0,1 1,150
10 60 0,2 1,732
11 63 0,2 1,963
12 62 0,4 1,881
13 60 0,7 1,732
14 56 0,1 1,483
15 62 0,4 1,881
Mean 0,367 1,364
Standard deviation 0,247 0,392
Variation coefficient 0,673 0,287
§ 1,050 1,000
kn 0,450 0,450
Eurocode M. 0,231 1,188
Characteristic Guia carreteras M. 0,349 1,364
Value Shneider M. 0,243 1,168
Mean Value 0,274 1,240

4.3. Estimation of crack length: (Cracked base Analysis)

To estimate the length of the crack in the dam interface, we compute the moments about the
heel of the dam upstream (point O, see Figure 6).
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Figure 6. Graphic representation of the general scheme for estimating the length of the crack.

Moments produced by all forces considered are applied to the structure, including weight of
the dam, reservoir water level and uplift. The aim of this method is to estimate the location of
the line of action of the resultant pressures (R) at the base of the dam. Once this point at the
interface is located, and assuming that the variation of effective stress along the base is linear,
it can be assumed that the resulting distance from the location of the resultant to the dam foot
given by point O', corresponds a third of the total length of contact at the dam-foundation
interface (X,). Therefore the crack length is given by:

X, =L=3(L=X,)

C

(15)

Where L is the total length of the dam base and Xp is the distance horizontally on the sliding
surface, determined by the relation between the resulting from the moments about point O
and the sum of vertical forces, as indicated by the expression:

> M,
X, ==—=
(16)

The proposed method for estimating the crack length is iterative, assuming for the first
calculation the absence of the crack in the base (X, = 0).

Since there are no data on pore pressures in the foundation, or on the failure potential
surface, we used certain rules established by the current regulations for estimating uplift.
Basically, the uplift depends on the location of the drainage on the vertical with respect to the
downstream elevation head, on the efficiency of the drains and on the estimated length of the
crack in the concrete-rock interface FERC [9].

Figures (7.1) and (7.2) show the uplift diagrams recommended by the Federal Energy
Regulatory Commission, applied in estimating the length of the crack to the overall analysis of
the stability of the dam:
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Figure 7. Uplift assumptions for concrete gravity dams, FERC [9].

Table 5 shows the results of the iteration performed for estimating the length of the crack (Xc)
for each level of the reservoir and for the two cases of drainage proposed. In reservoir levels
where the length of the crack extends along the entire length of contact, we can infer that
failure has occurred, as in fact can be verified by the safety factors that are computed later in
section 4.4.

4.4. Part 1 (Level | Analysis): Estimation of safety factor

Once the crack length is obtained for each load case proposed, the safety factor associated to
each event, can be obtained by the following equation DGOC [3]:
N’ (tan ¢)k +Bcy

H

Fs = L =
S wi (17)

Where:

r: is the resistance force, which mainly depends on the conditions and properties of the sliding
surface

s: is the de-stabilizing force

N’: is the effective force normal to the slip plane, calculated by the difference between the
weight of the dam and the estimated uplift;

'=W-U (18)
U: is the Uplift pressure under the dam
W: is the dead weight of the dam

B: is the area of application of the cohesive strength on the sliding base, as determined by the
area of contact (without crack) given by:

¢ (19)

(tang),: is the characteristic value of the tangent of the friction angle



¢k is the characteristic value of the cohesive strength
Hwi: is the upstream water pressure of the reservoir that depends of the water level

Table 5 summarizes the results of Level | analysis for each case-level reservoir and for each
drainage condition.

Table 5. Results of the factor of safety estimated.

Water Level
(mf:;ﬁ;g:i:zm- (tonl;ml) N' (ton/mi) (T:n‘%l) Xc(m) B (m) Fs
contact plane)

75 825,00  5.085,00 2.812,50 0,00 60,00 2,83
'§ 78 858,00 5.052,00 3.042,00 0,00 60,00 2,60
"s' 80 880,00 5.030,00 3.200,00 0,00 60,00 2,46
:3.‘:_’ 82 902,00  5.008,00 3.360,00 0,00 60,00 2,34
- 85 1.289,34 4.620,66 3.600,00 11,69 48,31 1,96
c 75 2.250,00  3.660,00 2.812,50 0,00 60,00 2,20
g 78 3.042,90 2.867,10 3.042,00 18,02 41,98 1,55
_g 80 4.003,59  1.906,41 3.200,00 40,09 19,91 0,91
i-{': 82 4.920,00 990,00 3.360,00 60,00 0,00 0,37
= 85 5.100,00 810,00 3.600,00 60,00 0,00 0,28

4.5. Part 2 (Level Il Analysis): FOSM Taylor’s series

Methods for level Il reliability analysis employ an approximation, so that instead of considering
the complete probability distributions of the variables, we employ only their first two
moments.

The result is computed using a Taylor series expansion; where the reliability index (B), is
computed as the number of standard deviations that separate the expected value of the
function E[g *], from of the limit state surface given by g * (x1, x2, ... xn) = 0. Such B value
provides a relative measure of reliability, so that when B value is low, the structure is more
insecure (In addition, note that although this method does not provide an exact computation
of the probability of failure, such probability of failure can be estimated based on beta using
Eqg. (25) below.)
From Eq. (17), the limit state function g* is defined in this case as:
gt=Fs—1=1-1
S (20)

The expected value of g * is obtained by evaluating the function at a point in n-dimensional
space corresponding to the expected values of the random variables:
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Considering the independence between random variables involved xi, the variance can be
calculated as:

2
Var[g*] = Z (OXLJ GXiz

(22)

Where the Taylor series expansion is used to approximate the first order derivatives in cases
where the function g * is not linear. To do this, the function g * is evaluated in two points at a
distance of one standard deviation from the mean, one on each side, thus:

Var[g*] = Z{(g*(E[Xi +ou])-e* Elx, —oXi])]ZJ

i ? (23)
Thereby, we can get the reliability index as:
B = Ele *] - (& *)satio _ Elg*]-0 _ Elg *]
Og* og* og* (24)

Where gg* is the standard deviation of g*, and corresponds to the square root of the variance;

#]= .~ 2
Var[g ]—cg* (25)

Table 6 shows the results obtained using this level Il analysis approach to the cases proposed
in the benchmark problem.

Table 6. Results of reliability analysis, using Level Il method.

Water Level ‘q '3\ ‘§ °
(in m over 9 © < <
dam- Elgl T € € € varlgn B o)
foundation £ £ S £
contact plane) %o "0 %0 "0
c 75 1,83 257 1,08 239 126 08743 1,95 2,530E-02
g 78 1,60 2,29 092 212 1,08 07412 1,86 3,147E-02
£ 80 1,46 2,11 082 1,9 097 06662 1,79 3,642E-02
g 82 1,34 1,95 0,72 1,81 0,87 0,6009 1,73 4,209E-02
- 85 0,96 1,49 043 1,32 0,60 0,4061 1,51 6,594E-02
£ 75 1,20 1,74 066 1,76 0,63 0,6066 1,54 6,177E-02
g 78 0,55 094 0,16 091 0,18 0,2843 1,03 1,522E-01
g 80 0,09 0,16 -034 0,07 -0,26 0,0874 -0,31 6,200E-01
% 82 0,63 -0,51 -0,76 -0,63 -0,63 0,0148 -522 1,000E+00
[ =

85 0,72 -0,63 -0,81 -0,72 -0,72 0,0086 -7,77 1,000E+00




Table 6 incorporates a column where the probability of failure associated with each event is
estimated using the computed reliability indices. To that end we need to assume that:

Praio =Plg* < 0] = ©(-p) (26)

Figure 8 shows the variation of the probability of failure associated to each reservoir level and
for cases with efficient and inefficient drainage. Predictably, the failure probabilities for case
"A" (efficient drainage) are significant lower than for case “B” (inefficient drainage).

FOSM Taylor’s series
Conditional probability of failure with 2 random variables
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Figure 8. Variation of the probability of failure of the dam, as a function of the reservoir level
and drainage condition for application level Il, respect to the level of the reservoir. Results
computed using Level Il analysis.

4.6. Part 3 (Level lll Analysis): Monte Carlo simulation method

Monte Carlo simulation is a quantitative technique that uses statistical tools to reproduce,
using mathematical models, the random behavior of real systems. The method attempts to
assess directly the value of the probability of failure by evaluating the integral.

Pf = P[g * (xl,xz,....xn)s 0] = J'fxl,xz,...xn(xl,xz,...xn)dxldxz...dxn
(27)
where:

f(x1, Xz,.... Xp): is the joint probability density function of the random variables involved (x,
X2t Xn)

By the Monte Carlo method, we want to obtain the failure probability through the generation
of n random variables (or experiments), so that such generated variables follow the (previously
known) statistical distribution that characterizes these variables.

The main steps to estimate the probability of failure of the proposed benchmark problem are
explained below:



4.6.1. Generation of random variables

After obtaining the statistical distributions for the ¢ and tand random variables, we aim to
generate (i.e., to simulate) the values of the n sets of parameters, used to represent the values
of the random variables considered.

Such calculations can be easily conducted using common spreadsheet software such as Excel,
where the simulation of n “realizations” was performed using the tools for "Random Number
Generation" included in this program. With this option, we can easily generate samples from
several discrete (Bernoulli, Binomial, Poisson) or continuous distributions variable (Uniform
and Normal). We start generating n variables, from as uniform distribution between 0 and 1,
(Uc~(0.1) and Utang ~ (0 1), see Table 8). The number of experiments for the simulation were
n = 100,000.

Following the generation of 100,000 values with uniform distribution between 0 and 1 for
each of the random variables considered (c and tand). We used the cumulative distribution
function of each parameter to generate the 100,000 final values of (c, tand) pairs required for
the simulation (see example in Figure 9).

Cumulative density function
1,0 -
— 0,8 A
i
S 06 -
5 04
g 02
D 0,0 1 T T T T T T T T T 1
(o] < [(s} (o] o < (Vo] [ee] o (o] <
O O © © d 4 & a4 4 & &
Tan(o)

Figure 9. Example of generating of a value tand, based on its cumulative density function.

Once that we have generated the values of c and tand we can use such values for compute the
stability conditions for each case, taking into account the different reservoir levels and
different drainage conditions. Table 7 shows as example of such computation, note also in
Table 7 that if the factor of safety indicates failure (FS<1) then we use an auxiliary variable with
value I=1 to indicate it; otherwise, for stable conditions (FS>1) we use 1=0. Such auxiliary
“indicator” variables will be late employed for compute the probability of failure.

Table 7. Results of the n experiments for a reservoir level 75 m. Case “B” inefficient drainage.

n Uc~(0,1) c(Mpa) Utand~(0,1) Tan ¢ Fs |

1 0,6854 0,409 0,2152 0,990 2,661 0

2 0,0306 0,097 0,2432 1,026 2,061 0

3 0,8847 0,633 0,4789 1,278 3,661 0
9.998 0,2948 0,219 0,0049 0,287 0,985 1
99.999 0,4003 0,261 0,5231 1,321 2,945

100.000 0,2340 0,195 0,0686 0,716 1,711




4.6.2. Estimating of the probability of failure.

A similar table to table 10 can be computed for each reservoir level (Ni) and for each drainage
conditions. Then, the conditional probability of failure for a given reservoir level and a specific
drainage condition can be computed as:

|
PFININD) =1

M-

>

(28)
where:

Ni: is the level of the reservoir

D: is the drainage condition (either A or B)

l;: is the value assigned for each experiment, (0) for FS > 1 and one (1) FS <1

n: is the total number of experiments (n=100.000)

Next, we use the fact that events A and B are mutually exclusive, so that it is possible to obtain
the conditional probability of failure of the system for a given reservoir level. Such probability,
denoted as P(F|Ni), is given by:

p(FIN)=PFEININA)P(A)+PFININB)P(E) (29)

Table 8 shows the computed probabilities of failure for the five reservoir levels considered.

Table 8. Results of conditional probabilities of failure (for different reservoir level).

Water Level
Ni (in m over dam- P(F|Ni N A) P(F|Ni N B) P(F|Ni)
foundation contact plane)
N1 75 2,36E-03 5,66E-03 2,69E-03
N2 78 3,25E-03 3,86E-02 6,78E-03
N3 80 4,00E-03 4,54E-01 4,90E-02
N4 82 5,03E-03 1,00E+00 1,05E-01
N5 85 1,32E-02 1,00E+00 1,12E-01

Similarly, Figure 10 shows the variation of probability of failure as a function of reservoir level
in case of efficient and inefficient drainage. It also shows the conditional probability of failure,
for a given reservoir level, computed once that both drainage conditions have been considered
over all with their corresponding probability. It can be seen that the curve representing the
case with ineffective drains (case B) is more sensitive to the increase of the reservoir level that
the curve corresponding to the case with effective drains (case A).
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Figure 10. Variation in the probability of failure of the dam, using application-level llI,
depending on the level of the reservoir, for cases A (efficient drainage) and B (inefficient
drainage).

4.7. Discussion of Results

For the deterministic analysis of Level |, we have obtained safety factor values consistent with
the estimated crack lengths. For instance for the case "A" (efficient drainage) cracks lengths
did not exceed 12 meters and safety factors are always over 1,69. Moreover, in case "B"
(inefficient drainage) are obtained for reservoir heights of 80, 82 and 85 meters safety factors
of less than 1, so it is clear that the dam is unstable. Note, however, that although the use of
characteristic values has allowed as to consider the uncertainty of our strength parameters
estimates when we compute safety factors for each drainage condition, it is difficult to
incorporate the probabilistic information that performing drains are significantly more likely
than non-performing drains.

Previously, we made a comparison of the drainage cases according to the Probability of failure
for different reservoir elevations computed with the same level analysis (figures 8 and 10).

To study the influence of the analysis type, next we compare results computed with different
methodology of analysis. Figure 11 shows the variation of the probability of failure of the dam,
for levels 1l and Il analysis, with respect to reservoir elevation considering efficient drainage
(case A). In this figure it is possible compare the accuracy of evaluation methods, where Monte
Carlo simulation is expected to be more accurate than FOSM. For this case, it can be observed
that there is a large difference (up to one order of magnitude) between the results computed
with both methods, and it is also odserved that much difference tend to increase as the
probability of failure is lower, (in other words it increases as we enter the “safer” zone where a
dam design is expected to be). Note that, studying a similar problem of dam stability against
plane failure, Altarejos et al [4] also report differences of one order of magnitude — and even
larger- between probabilities of failure computed using Level Il and Level Ill method. This
emphasizes the importance of using advanced (i.e. Level Ill) models such as Monte Carlo
because, although FOSM is more conservative in this case (it provides higher probabilities of
failure) it is not guaranteed that it will be conservative in all cases. In addition, such differences
in probabilities of failure computed with different methods can have a significant practical



influence in real projects, as it could affect the acceptability of a dam design. (For recent
discussion of design criteria employed by the Us Boureau of Reclamation; see Scott [2].

Probability of failure: Case A: Efficient drain
1,0E+00
g
= 1,0E-01
£ —
6 o —— ?
> v
S 1,06-02 =
© -
Ne) - - =
o -
1,0E-03
74 76 78 80 82 84 86
Reservoir level (m)
et FOSM Taylor's Series == B= [Vlonte Carlo Simulation

Figure 11. Variation of the probability of failure of the dam with respect to reservoir elevation
for case with efficient drainage (case A), using level Il and Ill analysis.

Similarly, Figure 12 shows the variation of the probability of failure of the dam, for levels Il and
Il analysis, with respect to reservoir elevation, but considering inefficient drain this time (case
B). We can observe that the probability of failure it is increased dramatically after a reservoir
level of 78 meters, indicating very high probability of failure of corresponding to the three last
reservoir levels for this case of drainage.

Probability of failure: Case B: Inefficient drain
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Figure 12. Variation of the probability of failure of the dam with respect to reservoir elevation
for case with inefficient drainage (case B), using level Il and Il analysis.



Additionally, Figure 13 shows the variation of the general probability of failure of the dam, for
levels Il (FOSM) and Il analysis (Monte Carlo Simulation), with respect to reservoir elevation.
In this case we consider the probability of occurrence in terms of the efficiency of drainage
applying Eqg. (29), in which is observed the same behavior with respect to the increase of the
difference between results when the general probability is lower.

General probability of failure with 2 random variables
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Figure 13. Variation of the general probability of failure of the dam with respect to reservoir
elevation, using level Il (FOSM) and Ill analysis (Monte Carlo).

5. Conclusions

This paper presents our computed results of a benchmark problem for analysis of a gravity
dam against plane failure due to sliding through the dam-foundation interface. The geometry
and material properties of the dam are considered as deterministic, but the strength
parameters (cohesion and tangent of friction angle) are considered as random variables to
represent the variability reported in a series of shear tests. The possibility of formation of a
crack at the base where cohesion is not applied is considered. Several reservoir levels are
considered for the analysis, as well as two different drainage conditions (performing and non-
performing) with their corresponding probabilities of occurrence.

Three types of analysis are reported: Level | (or deterministic), in which conservative
characteristics values of strength parameters are employed to consider parameter variability
and to compute the factor of safety of the dam; Level Il (FOSM) analysis, in which approximate
estimates of the probability of failure are computed employing a first order (linear)
approximation of the Limit State Function in conjunction to first and second order statistics
(mean and variance only); and Level Ill (Monte Carlo) analysis, in which "exact" estimates of
the probability of failure are computed using simulation methods with full probabilistic
information and the real limit state function.

As expected, results indicate that the stability conditions of the dam (as expressed by the
safety factor or by the probability of failure) get worse as the reservoir level increases, and
they also show that to maintain drains in good conditions is a crucial aspect to increase dam



safety. In addition, they suggest that Level | methods can be employed (with the use of the
corresponding characteristic values of the random variables involved) to obtain estimates of
dam stability under different combinations of water level and drainage conditions. However,
the incorporation of probabilistic information (e.g., the probability of drainage failure) is not
natural within this approach, and a full probabilistic approach must be used for such task if we
want to use our results into a risk-management framework.

Finally, results show that large differences (of up to one order of magnitude, and probably
more in some cases) can be expected between results computed using Level Il and Level llI
methods. Although FOSM results seem to be conservative in this case, this emphasizes the
importance of employing "advanced" (i.e., Level Ill methods) to compute estimates of dam
stability under conditions of uncertainty.

References

[1] Bond (2011). A procedure for determining the characteristic value of a geotechnical
parameter. 3" International Symposium on Geotechnical Safety and Risk. Munich,
Germany.

[2] Scott G. A. (2011). The practical application of risk assessment to dam safety. Georisk
2011: Risk Assessment and Management (GSP 224) pp. 129-168.

[3] Direccién general de obras de carreteras, DGOC. (2009). Guias de cimentaciones en obras
de carreteras. Secretaria de estado de planificacién e infraestructuras. Centro de
publicaciones del Ministerio de Fomento, Spain.

[4] Altarejos Garcia & Escuder Bueno & Serrano Lombillo & Gomez de Membrillera Ortufio.
(2008). Assessment of the conditional probability of failure of concrete gravity dams using
probabilistic analysis methods of level Il and Il (Monte Carlo Simulations). XXXIIl Jornadas
sudamericanas de ingenieria structural, Santiago, Chile, 2008.

[5] Jiménez-Rodriguez R. & Sitar N. (2007). Rock wedge stability analysis using system
reliability methods. Rock Mechanics and Rock Engineering Vol. 40-4, pp. 419-427.

[6] Jiménez-Rodriguez R. & Sitar N. & Chacdn J. (2006). System reliability approach to rock
slope stability. International Journal of Rock Mechanics and Mining Sciences Vol. 43-6, pp.
847-859.

[7] EN 1997-1 Eurocode 7 : Geotechnical design - Part 1: General rules.

[8] EN 1990 Eurocode: Basis of structural design, Annex D: Design assisted by testing
(informative).

[9] Federal Energy Regulatory Commission, FERC. (2000). Engineering guidelines for the
evaluation of hydropower projects draft chapter 111, Gravity Dams.

[10] Schneider H.R. (1999). Panel discussion: Definition and determination of characteristic soil
properties. Balkema, Vol. 4, pp. 2271-2273.



X1 ICOLD BENCHMARK WORKSHOP ON NUMERICAL ANALYSIS OF DAMS

Valencia, October 20-21, 2011

THEME C

ESTIMATION OF THE PROBABILITY OF FAILURE OF A GRAVITY DAM FOR THE SLIDING
FAILURE MODE

GASCO JIMENEZ, MARA
mamgasji@cam.upv.es

Universidad Politécnica de Valencia

Summary

Traditionally, the safety against sliding for gravity dams has been considered by the usage of safety
factors. This is always a useful tool for engineering due to its easy calculation and evaluation.
Nowadays, the development of dam safety allows calculating the probabilities of failure. This work
has been carried out with the aim of establishing relationships between the traditional safety factors
and the probabilities of failure. Also, it was studied the most suitable calculation method for this
probabilities.

Firstly, the safety factor and the probability of failure for a concrete dam taking into account
different water levels in the reservoir are calculated. The mathematical model of analysis used is a
two dimensional limit equilibrium.

After that, the results obtained in each case comparing the different methods for establishing the
relationships between them and their validity in the safety analysis of a dam are studied. The
methods used are the Taylor series, the Point Estimate Method and the Monte Carlo simulation.

Finally, the Monte Carlo method for the calculation of the probability of failure is recommended due
to the low failure probability of a dam.

1. Introduction

A gravity dam is analyzed to get relationships between several water levels, factors of safety and
probabilities of failure using a limit equilibrium model. The failure mode studied is sliding along the
dam-foundation contact.

The traditional way of evaluating dam safety is using safety factors because of its probed good
results. Most of the existing dams have been built considering these safety factors. The dam safety
approach based on risk analysis has been developed with the aid of the computer’s mathematical
tools, but its implementation in existing dams is not spread out. For this reason, the results of the
different approaches to dam safety are going to be analyzed in this report. These methods are the



safety factor, and the calculation of the probabilities of failure with different methods (Taylor series,
Point Estimate Method and the Monte Carlo simulation).

Different water levels and drainage effectiveness situations are considered.

Lastly the different results have been compared in order to obtain conclusions.

2. Case study

The geometry of the dam is shown below:

i |
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80m T5m

Drain axis

Figure 1: Geometry of the dam

It is necessary to focus on the drain effectiveness because these can be effective and non effective.
The probability associated to the first case is 0.9 and 0.1 for the second case. The loading distribution
for each case is shown in the following figures:
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Figure 2: Case drains effective Figure 3: Case drains non effective
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It is necessary to focus on the drain effectiveness because these can be effective and non effective.
The probability associated to the first case is 0.9 and 0.1 for the second case.

The material properties are given as data. The friction angle and the cohesion are chosen as the
mean data taken a normal distribution function.

Table 1: Data for friction angle and cohesion at the interface

Case Friction angle (°) | Cohesion (MPa)
1 45 0.5
2 37 0.3
3 46 0.3
4 45 0.7
5 49 0.8
6 53 0.2
7 54 0.6
8 45 0
9 49 0.1
10 60 0.2
11 63 0.4
12 62 0.4
13 60 0.7
14 56 0.1
15 62 0.4
Mean 52.4 0.38
Std. deviation 7.99 0.24

3. Mathematical model of analysis

The mathematical model is a simple two-dimensional limit equilibrium model. The loadings
considered have been self-weight, hydraulic pressure acting on the upstream face of the dam and
uplift acting on the base of the dam.

Firstly, we have to calculate the forces acting on the dam.

Hydrostatic load, S (N/m), is the driving force and can be evaluated by (Eq.1)

1
S="p,gh? 1
2 w9 (1)

Shear strength, R (N/m), is calculated with (Eq.2)

R=(N-U)tgp+B-c (2)

Where,

N (N/m) is the sum of vertical forces acting on the dam-foundation contact surface.
U (N/m) is the uplift.

B (m?/m) is the area in compression in the dam-foundation contact.

2 (") is the friction angle in the contact.

C (Pa) is the cohesion in the contact.



It is assumed that there is not tensile strength in the dam-foundation contact. Therefore, when there
are tensile strength in this area a crack is developed.

The model has shown that for several water levels a crack is developed at the interface. This crack
produces a variation on uplift pressure that has been considered.

The different crack lengths are shown in the following table:

Table 2: Crack lengths

Water level (m) Crack length (m)
Drain effective Drain non effective
75 0 0
78 0 18.03
80 0 40.09
82 0 60
85 12.01 60

As we can see in the table above the behavior of the dam is better when drains work correctly.
When drains are non effective a crack line is formed even for low water levels and the dam is not
stabilized for water level higher than 82m. Therefore drainage system impact on the behavior of the
dam is extremely high.

4. Theoretical basis

If our project variables (Xy,X,,...,X,) are considered as random variables, it is possible to define the
strength function r(x4,x,,...,X,) and the load function s(xy, X,,...,X,) and write the limit state equation as
follows:

F(X Xp1eem1 %)

(X, X, X Y=0(X,, X,,..., X )=1=
g (1 2 n) g(l 2 n) S(Xl,Xz,...,Xn)

-1=0 (3)

According to this, the failure domain in the n-dimensional space is defined as all the possible
values (xy,X,,...,X,) that verify the condition:
9% (X, Xy 4oy X, ) <0 (4)

n

and the safety domain is defined as all possible values (x4,x,,...,X,) that verify the condition:

g* (X, Xy ey X)) >0 (5)

Different methods of analysis to estimate the conditional probability of failure on a concrete gravity
dam are shown. The failure mode studied is sliding along the dam-foundation contact. These
methods can be classified as Level 1, Level 2 and Level 3 methods.

4. 1. Level I: Factor of safety

Consist in the evaluation of the limit state equation for a certain constant value of the variables
(X1,X5,...,Xn). If the evaluation of the function g* is in the safety domain (according to equation (5)) for
these so-called representative values, then the system can be considered safe if is away from the
limit n-dimensional hyper surface g*(xy,X,...,X,)=0 by a safety margin expressed with this factor of
safety.

Considering the expression (3) we can obtain:



g(xl’XZ"“’Xn) S(Xl,XZ,---:Xn) (6)

We can define the safety factor (GSF) as the one which accomplish the condition:
g(X, Xpeees X, ) —GFS >0 (7)

For the dam considered in the case study:

ors = R_(N-U)tgo+B-c 8)

1 puah?

This a common tool in civil engineering to check the safety of a dam. Different countries have their
own regulatory rules and guidelines for these safety factors in concrete dams.

4.2. Level I

The Level Il methods are a first order approximation (linear) of the g* function considering also only
the 2 first moments of the joint probability density function. The typical output for these methods is
the reliability index B, defined as follows:

_ E[g*] - (g*) fallo

Jg* Ug* O'g*

_ E[9¥]-0 _ E[g”]

B

(9)

For obtain the probability of failure there is need to make the assumption of the shape of the g*
distribution. One possibility is the assumption of a normal distribution, so the probability of failure
(Ps[g*<0])can be calculated as:

P.[9* < 0] =®(-p) (10)

The probability of failure has been estimated with two different Level 2 methods. Firstly, the Taylor’s
series approximation has been applied and later the Rosenblueth’s Point Estimate Method (PEM).

Taylor series
The function g*(x1,X,...,X,) must be linear to obtain the first two moments of the probability

distribution of g*(x1,x,...,x,) from the first two moments of the probability distributions of the
random variables X1,X,,...,Xn:

9% (X Xo ey X, ) = 8 + X + 3%, +..8, X, (11)

The first moment of the probability distribution of g*, assuming that the random variables are
correlated and that is a first order approximation, can be calculated as:

E[9*]= g™ (E[X,], E[X,]....E[X,]) (12)



The variance of the function g*can be calculated assuming independent random variables and
approaching the non-linearities by numerical calculation of the partial derivatives by using a very
small increment (positive and negative) centered on the expected value, but not so small in order to
capture some of these non-linearities. The expression obtained is:

(13)

Var[g]= Y. (9*(E[Xi]+%);g*(E[xi]_GXi)j

PE

The point estimated method determine the first two moments of the performance function g* by the
discretization of the probability distributions of the random variables X,X,,...,X. This discretization is
made in a few points for each random variable (two points in Rosenblueth method), where mass
probability is concentrated in such a fashion that the sum of the probabilities assigned to each point
is 1 for each random variable.

The method concentrates the mass probability of the random variable X; in two points, x;; and xi,
each of them with a mass probability of P, and P.. Points are centred about the mean value, . y;, at a
distance of d;, and d;.times the standard deviation o ; , respectively.

E[g *] = Z Povsa..an 9 " re2..a) (14)

And the second moment is:

E[g *2]: Z P(glvgz ,;n)g *2(51,62 ..... o) ( 15 )

The variance is calculated with the following expression:
varlg*]= E[(g* 4, F |- Elg <]~ 7 (16)

4.3. Level lll: Monte Carlo Simulation

The level Il methods provide a more accurate evaluation of the probability of failure because all the
information of the probability density function is considered. Monte Carlo method generates N sets
of values for the random variables according to their probability distributions and possible
correlations:

A

X(I): X11X21---1Xn ,|:1,,N (17)
(i)
Generation of these values is accomplished by statistical techniques. The performance function is

evaluated for each one of these sets of values, and the number of failures, m, (when g*<0) is
calculated. The probability of failure can be then estimated by:



P

4. Results

~
failure ~

N A
m g*| X, X,,...,X

4. 1. Factor of safety against sliding

The safety factors obtained are:

Table 3: Factors of safety against sliding

Level I: Factor of Safety
Water level
Drains effective | Drains non effective

75 3.16 2.50
78 291 1.75
80 2.75 1.01
82 2.61 0.38
85 2.17 0.29

(18)

The results are shown in the following figure where it can be observed that the factor value is lower
when the water level upstream is rising. Also, it can be seen how the drains effectiveness is very
important because when the drains are working, we get a better safety factor. However, the dam is

safe in all the studied cases.

Factor of safety

Factor of safety

Water level (m)

75 76 77 78 79 80 81 82 83 84 &85

— | evel 1: GFS
Drains
effective

— | evel 1: GFS
Drains non
effective

Figure 4: Factor of safety against sliding

4.2. Level 2 reliability model

The next tables show the results obtained for each study case:



We can observe that the probability of failure is higher with Taylor’s series than with PEM.

Table 4: Level Il reliability model: Taylor

Water level FOSM - Taylor
(m) Drains effective | Drains non effective Total
75 6.80E-03 6.07E-03 6.72E-03
78 8.96E-03 3.04E-02 1.11E-02
80 1.08E-02 4.80E-01 5.77E-02
82 1.30E-02 1.00E+00 1.12E-01
85 2.45E-02 1.00E+00 1.22E-01

Table 5: Level Il reliability model: P.E.M.

Water level P.E.M.
(m) Drains effective | Drains non effective Total
75 4.46E-03 1.40E-02 5.42E-03
78 5.97E-03 5.40E-02 1.08E-02
80 7.27E-03 4.25E-01 4.90E-02
82 8.83E-03 1.00E+00 1.08E-01
85 1.70E-02 1.00E+00 1.15E-01

Probability

Probability of Failure: drains effective
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1.50E-02

1.00E-02

5.00E-03 | omnms

0.00E+00

75 76 77 78 79 80 81

Water level (m)

Figure 5: Probability of failure. Level Il: drains effective
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Figure 6: Probability of failure. Level Il: drains non effective

As can be appreciated in the above figures, the probability of failure calculated for the lower water
levels is higher using the Taylor method in the case of drains effective. In the case of drains non
effective, this tendency is the opposite being higher the probability of failure for the PEM method.
This behavior can be explained considering that the Point Estimate Method losses precision with the
increasing nonlinearity of g*, where g* = (R/S) - 1, that is the problem in the non effective case
Following the g* function is presented for the different combinations considered in the P.E.M. where
the lose of linearity in the case of drains effective is more clear.

Table 6: Different combinations to obtain function g* in P.E.M.

Combination in

(-5-)
(-5+)
(+;-)
(+;-)

AW IN|E
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Figure 7: Function g* in P.E.M.: drains effective Figure 8: Function g* in P.E.M.: drains non

effective

4.3. Level 3 reliability method Monte Carlo simulation

Lastly, it has been calculated the Level 3 method. The sets of values for the random variables have
been generated according to the following function distributions:

@~ N(52.4°8°) [28.4°,76.4°|MPa (19)
¢~ LN(0.375,0.237) [01.5]MPa (20)

The probabilities of failure are the followings:

Table 7: Level lll: Monte Carlo

Water Monte Carlo
level (M) | Dprains effective Drains non effective Total
75 1.00E-06 1.11E-03 1.12E-04
78 1.10E-04 1.82E-02 1.92E-03
80 1.90E-04 4.88E-01 4.89E-02
82 3.60E-04 1.00E+00 1.00E-01
85 1.24E-03 1.00E+00 1.01E-01
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Figure 9: Probability of failure. Level lll: drains effective

Probability of Failure: Monte Carlo drains non effective
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Figure 10: Probability of failure. Level lll: drains non effective

ilure for the different methods

4.4. Comparative analyses of probabilities of fa

In the next figure are shown the probabilities of failure obtained with the three methods:
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Figure 12: Probability of failure: case drains non effective

It can be observed how

probabilities.

Also, it can be seen that the probabilities of failure are closely related to the drains operation, which
reveals the importance of a good drain design and its afterwards maintenance in the dam.

the probabilities for levels below the crest seem quite high in level I
methods, considering the consequences that the breakage of the dam would have. That is explained
because these methods do not calculate properly the lower probabilities. Considering that the most
common situation in dams is having very low failure probabilities due to the magnitude of the
infrastructure, it is possible to conclude that these methods are not suitable for calculating these

4.5. Probability of failure vs factor of safety

In this section is presented the relationship between the safety factor and the probabilities of failure

obtained with the different methods studied. The results are shown in next figure:
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Figure 13: Probability of failure vs Safety Factor: drains effective
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Figure 14: Probability of failure vs Safety Factor: drains effective

It can be observed how a certain value of the safety factor has obtained different probabilities of
failure depending on the method selected. The results of probability of failure for the different
methods obtained for each safety factor reveal that the Monte Carlo provides suitable probability of
failure according the meaning of the safety factor.

5. CONCLUSIONS

Method of safety factors does not provide probability of failure. It is a traditional method which
minimum required values are different depending on the guideline considered.

Considering the results obtained in the different methods, it can be observed how the probabilities
obtained are in general too high, considering the consequences that the breakage of the dam would



have. Mainly, it can be observed that in the case of level 2 methods, the probabilities obtained are
too high because these methods do not calculate properly the lower probabilities. Considering that
the most common situation in dams is having very low failure probabilities due to the magnitude of
the infrastructure, it is possible to conclude that these methods are not suitable for calculating these
probabilities.

In conclusion, the most accurate model to estimate the probability of failure in this case is the Monte
Carlo one due to the low failure probability of a dam.

Lastly, it is important to remark that the probabilities of failure are closely related to the drains
operation, which reveals the importance of a good drainage design and its later maintenance in the
dam.
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Summary

The objective of Theme C is to obtain relationships between water levels, factors of safety and
probabilities of failure for a gravity dam considering the failure mode of sliding along the dam-
foundation contact. The dam proposed is taken from the Theme 2 of the 1999 ICOLD Benchmark.
This is done using two models of analysis for the dam-foundation system together with reliability
techniques. The models that have been tested are a limit equilibrium model and an elastic
deformable body model. The factor of safety against sliding is then calculated for several water
levels.

Following this step, the probability of failure for the sliding failure mode is estimated using two
different Level 2 reliability methods: FOSM Taylor Method and Point Estimate Method. Also a Level 3
Monte Carlo simulation method is used.

The results show that factors influencing the probability of failure rely not only on parameter
uncertainty, as uncertainties of several sources are present throughout the process. The main
sources of uncertainty identified are the type of model of analysis for stability, the crack opening and
propagation criteria, the factor of safety definition (it is not unique), the statistical fitting of
probability distributions to sample data, the selection of characteristic values of parameters to
evaluate the factor of safety, and the type of reliability analysis model chosen to estimate the
probabilities of failure.

Despite this overall picture, some useful information can be gained regarding the safety of the dam if
a probability approach is carried out together with the classical factor of safety evaluation.
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1. Formulation of the problem
In this section the problem to be solved is summarized.

1.1. Geometry of the dam

The geometry of the dam is depicted in Fig. 1. The full geometry including the foundation is shown in
Fig. 2. The foundation has a rectangular shape with height of 80 m and a total length of 300 m (120 m
upstream, 60 m under de dam, 120 m downstream).

e |

Sm

80m 75m

Drain axis

— 10m |<—

<

Y

60m

Figure 1: Dam geometry

Figure 2: Dam and foundation geometry

1.2. Material properties
Data on material properties for dam and foundation are given in Table 1. Data for material properties

for dam-foundation interface are given in Table 2. Friction angle and cohesion at the dam-foundation
interface are considered as random variables. Available data in the form of fifteen pairs of values are

given in Table 3.



Table 1: Data for dam and foundation materials

MATERIAL PARAMETERS

DAM FOUNDATION

Young’s modulus (MPa)
Poisson’s ratio

Mass density (kg/m3)
Compressive strength (MPa)

Tensile strength (MPa)

Strain at peak compressive strength

Strain at end of compressive softening curve

Fracture energy (N/m)

24000 41000

0,15 0,10
2400 2700
24 40

1,5 2,6
0,0022  0,0025
0,10 0,15
150 200

Table 2: Data for dam-foundation interface

MATERIAL PARAMETERS VALUE
Shear stiffness (MPa/mm) 20

Tensile strength (MPa) 0,0

Friction angle (°) See Table 3
Cohesion (MPa) See Table 3
Dilatancy angle (°) 0
Softening modulus (MPa/mm) -0,7

Table 3: Data for friction and cohesion at the interface

SAMPLE FRICTION COHESION
ANGLE (°)  (MPa)
1 45 0,5
2 37 0,3
3 46 0,3
4 45 0,7
5 49 0,8
6 53 0,2
7 54 0,6
8 45 0,0
9 49 0,1
10 60 0,2
11 63 0,2
12 62 0,4
13 60 0,7
14 56 0,1
15 62 0,4




1.3. Loading

The considered loadings are self-weight, hydraulic pressure acting on the upstream face of the dam
and uplift acting on the base of the dam. Five water levels are considered: 75, 78, 80 (crest level), 82
and 85 m. Development of a crack at the interface is considered and uplift pressure is updated
accordingly, as it is shown in Fig. 3. Two cases of drain effectiveness are considered, with discrete
probabilities associated:

e Case A: Drains effective (probability of 0,90)

e Case B: Drains not effective (probability of 0,10)

drain
axis

I crack tip
— v

P=peh I 0.2P PI

Case A. Drains effective Case B. Drains ineffective

crack tip

Figure 3: Dam and foundation geometry

1.4. Results to be provided

Considering the failure mode of sliding along the dam foundation contact, the results are divided in
three parts.

Part 1: Relationship between water levels and factor of safety.

The factor of safety is evaluated using two 2D models of analysis: a rigid body Limit Equilibrium
Model (LEM) and an elastic deformable body model implemented in the finite difference code FLAC
2D (Itasca) for the 5 water levels considered.

Part 2: Relationship between water level and probability of failure with Level 2 methods.

The probability of failure has been estimated using the LEM model together with two Level 2
reliability methods: the First Order Second Moment Taylor Approximation (FOSM) and the Point
Estimate Method (PEM), for the 5 water levels considered.

Part 3: Relationship between water level and probability of failure with Level 3 methods.

The probability of failure has been estimated using both LEM and FLAC models together with Level 3
Monte Carlo simulation method for the 5 water levels considered.



2. Models of analysis
In this section the models of analysis for the sliding failure mode are described.

2.1. Rigid body Limit Equilibrium Model (LEM)

Sliding stability can be analyzed with a rigid body 2D Limit Equilibrium Model. The hydrostatic load, S
(N/m), is the driving force and can be evaluated for a water height, h(m), by Equation (1).

1
S=—_p,gh’ 1
5 Pul (1)

The shear strength, R(N/m) is calculated with Equation (2).
R=(N-U)tgp+Bxc (2)

N (N/m) is the sum of vertical forces acting on the dam-foundation contact surface.
U (N/m) is the uplift.

B (m?/m) is the area in compression in the dam-foundation contact.

¢ (°) is the friction angle in the contact.

c (Pa) is the cohesion in the contact.

The resisting force is defined according to the Mohr-Coulomb model, considering zero dilatancy and
zero tensile strength to be developed at the contact. The two parameters governing its behaviour are
thus the friction angle, ¢, the cohesion, c. Uplift is thus considered as an active force acting along the
dam-foundation contact.

One of the aspects that control the response of the dam is the possibility of crack initiation and
propagation along the contact plane. The model used presents an initiation and propagation criteria
based on a comparison between the tensile strength and the tensile stress, see USACE [1]. If tensile
stress exceeds the tensile strength crack initiation happens. Crack opening causes a change in uplift
pressure distribution under the dam. It also causes a reduction of the zone under compressive stress,
resulting in a decrease of the resisting force together with a redistribution of stresses at the base.
This process continues and the crack propagates downstream until the tensile stress evaluated at the
tip of the crack is lower than the tensile strength. It may happen that this condition is not met and
the crack propagates throughout the base causing dam failure by instability or excessive compressive
stresses at the toe. Simulation of the process is carried out by an iterative process, where once
initiation criteria is verified, a small crack increment is assumed, uplift is re-evaluated and stress
distribution is calculated.

The factor of safety is defined according to Equation (3).

R
FS=o (3)



2.2. Elastic deformable body model (FLAC)

In this model, both the dam and the foundation are considered as elastic deformable bodies. The
model has been implemented in the code FLAC 2D (ltasca, 1994). This code uses a lagrangian explicit
scheme to solve the equation of motion, with references to the deformed shape. Plane strain is
hypothesized. Each zone of the model is subjected to its stress-strain law.

One of FLAC features is its programming language embedded called FISH, that enables to define
variables and functions to capture loading sequences, non linear behaviour on discontinuities and so
on.

The model solve the full equations of motion in Equation (4) using an explicit time-marching scheme
of calculation by time-steps.

R
anI _ Tij + pu, (4)

ot axj

where:

p: mass density

Ui : components of velocity vector

t: time

o;;: components of stress tensor

X;: components of coordinate vector

gi: components of gravitational acceleration (body forces)

Using the equations of motion to solve static problems leads to larger times of calculation but
provides numerical stability even when physical instability is reached.

The mesh geometry is shown in Fig. 2. The boundary conditions are prescribed displacements in part
of the boundary of the numerical grid of the foundation. The X-displacements are zero at the grid
points along the bottom of the foundation and the Y-displacements are zero at the grid points along
the right and left lateral sides of the foundation.

The constitutive model adopted for dam and foundation is linear elastic, as it is an acceptable first
approach due to the low level of stress expected in gravity dams.

The interface between dam and foundation is characterized by Coulomb sliding and tensile
separation. An interface is represented in FLAC as a normal and shear stiffness between two planes
which may contact one another, as depicted in Fig. 4. The Coulomb shear-strength criterion limits the
shear force to the maximum value controlled by the friction angle and the cohesion. If the magnitude
of the tensile normal stress exceeds the bond strength (which is zero in this case) at any point the
bond breaks for that point and it behaves thereafter as unbounded (separation and slip allowed). If a
crack is formed, uplift is updated using a FISH function, according to Fig. 3.

The factor of safety in this case is defined according to Equation (5) as the ratio between the value of
the parameter controlling the stability, ¢, (or c), and the value of the parameter when failure occurs,
OraiL, (Or Cra)- In (6) a linear degradation from values (¢, c) to (0,0) is assumed.

Fs=—2 -_C

Prail CraiL

(5)
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Figure 4: Interface model in FLAC

3. Variables

All the variables of the problem are deterministic, each of them having a single value with a
probability of one, except for the drain effectiveness, with two possible values, and for the friction
angle and the cohesion at the interface, where a sample of 15 different values is provided. This
variability is the reason for doing probability-based safety estimations. The drain effectiveness is
considered in the evaluation of the uplift value at the drain line. This uplift value has a discrete
probability distribution with only two possible values. Let P be the value of the uplift pressure under
the heel of the dam, which varies linearly with the water level, h. Then, the uplift pressure under the
drain line can be taken as 0,2P with a probability of 0,9 or as P with a probability of 0,1.

Fifteen pairs of values are given for friction angle and cohesion, as shown in Table 3. These two
parameters are considered as random values. To apply Level 2 reliability methods only the first two
moments of the distributions of the parameters are needed, while for Level 3 methods the full
probability density distributions should be known.

3.1. Friction angle

Several distributions have been test to fit the given data of friction angle values. The Normal
distribution fits very well to the data, although it is an unbounded distribution whereas the friction
angle is certainly a bonded parameter. In Table 4 and in Fig. 5 the results of the adaptation are
summarized.

Table 4: Probability distribution for friction angle

(°) SAMPLE ADAPTATION TO
NORMAL DISTRIBUTION
Mean, p 52,4 52,4
Standard deviation, o 7,99 7,99
Minimum value 37 -0
Maximum value 63 +00

The Normal distribution is an upper and lower unbounded distribution, so a truncation is needed to
give the adaptation a physical meaning and so avoiding sampling unrealistic very low or even
negative values of the friction angle with Level 3 methods.



Sample values are in the (-2c; +20) interval. Truncation of the function between [-3c; +30] is
adopted, which means that all values will be in the range [28,4°; 76,4°]. The standard deviation of the
truncated function is now o = 7,86° as it can be seen in Table 5.

Table 5: Probability distribution for friction angle

ADAPTATION TO TRUNCATION OF
(°) NORMAL ADAPTED NORMAL
DISTRIBUTION DISTRIBUTION
Mean, p 52,4 52,4
Standard deviation, o 7,99 7,86
Minimum value -00 28,4
Maximum value +00 76,4

The calculations with Level 2 methods will be done with values (i, ) from the sample and the
calculations with Level 3 methods will be done with the truncated adapted distribution.

3.2. Cohesion

Several distributions have been test to fit the given data of cohesion values. As cohesion is a bonded
parameter with a minimum value of zero, it is usual to check for lower bonded distributions. A
problem arises as one of the given data values is exactly zero, which makes it impossible to fit lower
bonded distributions that assign a null probability to that value of zero. To avoid this problem, that
single value can be omitted in the adaptation. Another possibility is to change the single zero value
by a non-zero value, still lower than the rest, for example by an order of magnitude. This second
option has been selected, changing the c=0 value for ¢=0,01. The sample and adaptation values are
shown in Tables 6 and 7. In Fig. 5 the results of the adaptation are summarized.

Table 6: Probability distribution for cohesion, including the single zero value.

SAMPLE ADAPTATION TO
(MPa) (with c=0) LOGNORMAL
DISTRIBUTION
Mean, p 0,367
Standard deviation, o 0,247 )
Minimum value 0 Not possible
Maximum value 0,80

Table 7: Probability distribution for cohesion, changing the single zero value.

(MPa) SAMPLE ADAPTATION TO
(with c=0,01) LOGNORMAL
DISTRIBUTION
Mean, p 0,367 0,458
Standard deviation, o 0,246 0,678
Minimum value 0,01 0

Maximum value 0,80 +00




The Lognormal distribution is an upper unbounded distribution, so a truncation is needed to give the
adaptation a physical meaning and so avoiding sampling unrealistic very high values of the cohesion
with Level 3 methods. The probability function is truncated for a value of 2 MPa, which is reasonable
upper physical limit for the cohesion at the interface. The truncation of the distribution changes the
mean and the standard deviation of the truncated function, as it can be seen in Table 8.

Table 8: Probability distribution for cohesion, changing the single zero value.

(MPa) ADAPTATION TO TRUNCATION TO
LOGNORMAL LOGNORMAL
DISTRIBUTION DISTRIBUTION
Mean, p 0,458 0,375
Standard deviation, ¢ 0,678 0,368
Minimum value 0 0
Maximum value +00 2

The calculations with Level 2 methods will be done with values (u, ) from the sample and the
calculations with Level 3 methods will be done with the truncated adapted distribution.

3.3. Correlation between variables

The correlation coefficient for the sample values of @ and c is p = -0,014 so the variables are
considered as not correlated.

Normal(52.4000; 7.9893) Lognorm(0.45794; 0.67796)
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Figure 5: Probability distributions adapted to sample values. Normal distribution for friction angle
(left) and Lognormal distribution for cohesion (right).



4. Reliability methods

In this section the reliability methods used to assess the probability of failure are briefly described.

4.1. Level 2 methods
A performance function g*(x4,X,,...,X,) is defined according to Equation (6).

*

g =FS-1 (6)

The typical output of these methods is the reliability index, 3, which is defined as the number of
standard deviations between the expected value of the function g*(xy,X,,...,X,) and the limit state
value defined as g*(xy,X,,...,X,)=0, as it is shown in Equation (7). This value gives us a relative measure
of reliability (distance between the most probable value and the failure domain), in the sense that
the larger the value of B, the safer the structure will be, but it does not tells us anything about the
probability of failure by itself.

5 Ele*l-(e™)um _Ele*]-0 _Efe*] o)
Cg* Cg* Cg*

As X4,X,,...,X, are random variables, g*(x;,X,,...,Xn) is @ random variable with a certain probability
distribution, usually unknown. To get an estimate of the probability of failure, and hypothesis on the
shape of this distribution is to be done. With the shape of the probability distribution and its first two
moments, both the reliability index and the probability of failure can be obtained.

4.1.1. First Order Second Moment (FOSM) Taylor Approximation

The function g*(x1,X,...,X,) must be linear to obtain the first two moments of the probability
distribution of g*(x1,x,...,x,) from the first two moments of the probability distributions of the
random variables X;,X,,...,X,. The first moment of the probability distribution of g*, assuming that the
random variables are uncorrelated can be calculated with Equation (8).

Elg*]=g*(E[X, ] E[X, ... B[X, ) (®)

So the expected value of g* is obtained evaluating the function in the n-dimensional point
corresponding to the expected values of the random variables. If the random variables are
independent, the variance of g* is calculated with Equation (9).

2
a *
Var[g*]:z (;{] G;i (9)

First order derivatives can be obtained straightforward if g* is a linear function. If it is not, first order
derivatives are approximated by the first order elements of the Taylor’s series expansion of g* about
the expected values. The partial derivatives are calculated numerically using a very small increment
(positive and negative) centred on the expected value. Following the USACE practice, a large
increment of one standard deviation will be used, in order to capture some of the behaviour of the
nonlinear functions, as in Equation (10).
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And the square of the first order derivative can be estimated by Equation (11).
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Substituting Equation (11) in Equation (9) the variance has the expression of Equation (12).
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With this method a number of 2n+1 evaluations of the performance function g* is needed, being n
the number of random variables considered.

4.1.2. Point Estimate Method

The point estimated method determine the first two moments of the performance function g* by the
discretization of the probability distributions of the random variables X,X,,...,X. This discretization is
made in a few points for each random variable (two or three points), where mass probability is
concentrated in such a fashion that the sum of the probabilities assigned to each point is 1 for each
random variable, see Rosenblueth [2] and Harr [3]. With this method there is no need to evaluate
partial derivatives of the performance function g*. A disadvantage of the method is that the
performance function has to be evaluated 2n times, being n the number of random variables. If n is
large, the method requires a considerable computational effort, above all if g* evaluation is not
straightforward.

The method concentrates the mass probability of the random variable Xi in two points, xi+ y xi-, each
of them with a mass probability of P;, and P;. Points are centred about the mean value, Ly;, at a
distance of d;, and d;. times the standard deviation, oy;, respectively, as it is shown in Equation (13).

Pi+ + Pi7 :1
Xiy =MUx, + di+ 'Ox, (13)

Xi- =uy, +d;i_-ox

Coefficients d;, y d;. are determined using the skew coefficient, y;, of the random variable X; , with
Equation (14).

2
Yi Yi

di, =—7+ |1+ —

) [2] (14)



Probabilities are assigned to each point according to Equation (15).

d;
T
di, +d;_ (15)
P =1-P,

A number of 2n values of discrete probabilities should be obtained by combination of the point
probabilities of each random variable with the other random variable’s probabilities. These
probabilities are P(84,0,,...,0,), where §; is the sign (+ or -). Values of these probabilities are calculated
with Equation (16).

n n—1 n
P(51,52,...5n) =[]Pis + Z( ZSiSjaijJ (16)
i=1

i=1\_j=i+l

Where the coefficients a; are calculated with Equation (17).

Py

(17)

Being p;; the correlation coefficient between random variables X; y X;.

The performance function g* has to be evaluated 2n times, corresponding to the 2n possible
combinations of discrete probability points P(84,0,,...,0,), obtaining g*(8,,0,,...,0,). Once this is
accomplished, the moment of m order of the probability distribution of g* is determined by Equation
(18).

E[g*m]zZP(sz ----- 6n)8 *(51,52....6n) (18)

So for the first moment is calculated with Equation (19).

E[g*]:zp(&,sz ..... 5n)8 ¥ (51,52,...5n) (19)
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.....

The variance of g* can be calculated by Equation (21).
Var[g *]=El(g*—ug*)zsz[g*z]—pé* (212)

So it is possible to determine the mean and the variance of the probability distribution of g* but the
shape of the distribution is not known. If what we want is a probability of failure, again a hypothesis
of how g* is distributed is to be done. The method loses precision with the increasing nonlinearity of
g* and if moments over the second are to be obtained. It does not provide a measure of the
contribution of each random variable to the overall variance, so it is not an adequate method to filter
the most relevant random variables.



4.2. Level 3 methods

Level 3 methods provide a more accurate evaluation of the probability of failure, as they consider all
the information of the probability density function and not only the first two moments. The
formulation of the problem is given in Equation (22).

Pf[g*(xl,xz,...,xn)SO]z J.fx,,xz ’’’’’ X, (X1, X5 ey Xy )dxdXx 5 udx (22)
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The integral can be evaluated with simulation methods (Monte Carlo Methods). With the simulation
methods we generate N sets of values for the random variables according to their probability
distributions and possible correlations, see Equation (23).

X(i)=[X1,X2,...,Xn] ;i=1,..,N (23)
(i)

Generation of these values can be accomplished with several statistical techniques. The performance
function is evaluated for each one of these sets of values, and the number of failures, m, (when
g*<0) is calculated. The probability of failure can be then estimated by Equation (24).

m[g *(xl,xz,...,anSOJ . (24)

P
N f

Praiio

This method of simulation is the normal Monte Carlo method (“Hit or Miss Monte Carlo Method”).
These simulation methods are deemed “exact methods” in the sense that they provide the exact
value of the probability of failure when N — oo. For lower values of N, what we get is an
approximation of the value of the integral in Equation (22). The estimator of the probability of failure
shows a mean and a variance given by Equation (25).

AN
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The accuracy of the estimation is measured by the inverse of the standard deviation of the estimator,
which is proportional to N>°. The N evaluations of the performance function form a sample of a
random variable, so it is possible to fit probability distributions to this sample. Once the probability
distribution function Fg, of the performance function is derived, the probability of failure is
straightforward calculated with Equation (26).

Py =P[g*<0]=F,(0) (26)

The problem is that in the tails of the distribution it is difficult to get an accurate fitting, and these
are usually the key areas to estimate the probability of failure.

To avoid the usual large number of calculations needed as the equilibrium problem (either with the
LEM or the FLAC models) has to be solved for each sample to evaluate g*, there are techniques such
as the response surface, Altarejos et al [4].



If it is possible to define this surface analytically for each water level, calculations are deeply
simplified, as it is only needed to evaluate if a sampled value falls in the safe domain or in the failure
domain, which are defined by the response surface for each water level. In the problem of sliding
along the dam-foundation contact, the response surface can be obtained when only two random
variables are considered in the analysis. In this 2D domain of the random variables, the limit surface
becomes a limit curve. With the LEM model it is possible to derive the analytical expression of the
limit curve. Let the two random variables be the friction angle, ¢, and the cohesion, c, and let L be
the driving force, N the normal force acting on the contact plane, U the uplift force and B* the area
under compression in the base of the dam. Then, the limit curve is given by Equation (27).

c=a,+a,-ge (27)

where the coefficients ag and a; are calculated with Equation (28).

(28)

The coefficient a, is the mean shear stress acting on the surface, t.,, and the coefficient a; is the
mean compressive stress acting on the surface. When the limit curve is known the probability of
failure can be calculated as it is depicted in Fig. 6.
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Figure 6: Calculation of the probability of failure with the limit curve.

The limit curve for the limit equilibrium model in the space (tgo, c) is a straight line. If pairs of values
(tgo, c) obtained with the elastic deformable body model follow a straight line as well, the problem is
reduced to a linear regression. Points on the limit surface are estimated by a radial sweep with joint
degradation paths for friction angle and cohesion with initial points in the boundaries of the feasible
region and final point the origin of coordinates. For each water level considered, points are obtained
on the limit surface and a line is fitted to them.



5. Results

5.1. Part 1: Relationship between water levels and factor of safety

To allow consistent comparison between the factors of safety computed with different models of
analysis, the factor of safety using the LEM model has been calculated with Equation (3) based on the
ratio between strength force and driving force and also with Equation (5), based on the ratio
between the characteristic value of the parameter and the value that leads to failure.

In any case, a decision has to be made about what characteristic values of the strength parameters
(¢, c) should be used to evaluate the factor of safety. In this case, the characteristic values selected
have been the mean values estimated from the sample. The results in terms of the water level —
factor of safety relationship is shown in Table 9 and in Fig. 7.

Table 9: Relationship between water levels and Factor of safety

WATER LEVEL DRAINS EFFECTIVE DRAINS INEFFECTIVE
(m) LEM model FLAC model LEM model FLAC model
FS=R/T FS=0/Q_tii  FS=@/0_ai FS=R/T FS=0/Q_tii  FS=@/0_ai
75 3,15 2,53 2,51 2,49 2,07 1,91
78 2,90 2,34 2,33 1,74 1,50 1,62
80 2,75 2,22 2,10 1,01 1,00 1,27
82 2,61 2,12 1,00 0,44 0,73 0,90
85 2,17 1,79 0,87 0,41 0,72 0,87
FACTOR OF SAFETY
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Figure 7: Water level —factor of safety



5.2. Part 2: Relationship between water level and probability of failure with Level 2
methods

The probability of failure has been estimated using the LEM model together with two Level 2
reliability methods: the First Order Second Moment Taylor Approximation (FOSM) and the Point
Estimate Method (PEM), for the 5 water levels considered. Probabilities have been calculated for
each case of drain performance. The total probability of failure, Peaure, fOr each water level, can be
obtained with Equation (22) combining the two discrete probabilities of drain performance, Py, for
drains effective (Pp = 0,9) and for drains ineffective (Py=0,1).

Pearure = Po x P(faillPy =0,9)+ P, x P(fail|P, =0,1)=

= 0,9P(fail|P, =0,9)+ 0,1P(fail|P, =0,1) (22)

The results are shown in Table 10 and in Fig. 8 to 10.

Table 10: Relationship between water level and probability of failure with Level 2 methods

DRAINS EFFECTIVE DRAINS INEFFECTIVE TOTAL PROBABILITY
WATER LEVEL - -

(m) P(fail | PD=0,9) P(fail | PD=0,1) PraiLure

FOSM PEM FOSM PEM FOSM PEM
75 7,56x10°  5,12x10°  2,24x10%  1,64x10°  9,05x10°  6,25x1073
78 1,04x10°  6,80x10°  1,58x10"  5,53x10°  2,51x10%  1,17x102
80 1,23x10%  8,14x10°  4,86x101  4,34x10"  5,96x10°  5,07x10%
82 1,46x10%  9,97x10°  1,00x10°  1,00x10° 1,13x10"  1,09x10*
85 2,70x10°  1,88x10°  1,00x10°  1,00x10° 1,24x10"  1,17x10*

PROBABILITY OF FAILURE - LEVEL 2 METHODS
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Figure 8: Water level — probability of failure with Level 2 methods. Total probability.
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Figure 9: Water level — probability of failure. LEM model and Level 2 methods. Drains effective

LEVEL 2 METHODS - DRAINS INEFFECTIVE
1.00E+01
1.00E+00 e —
>
g
% 1.00E-01
0
©
<)
£ L00E-02
LL
1.00E-03
1.00E-04
75 76 77 78 79 8 81 8 83 84 8
Water Level (m)
| =5~ FOSM TAYLOR —A— POINT ESTIMATE METHOD |

Figure 10: Water level — probability of failure. LEM model and Level 2 methods. Drains ineffective



5.3. Part 3: Relationship between water level and probability of failure with Level 3
methods

The probability of failure has been estimated using both LEM and FLAC models together with Level 3
Monte Carlo simulation method for the 5 water levels considered. Probabilities have been calculated
for each case of drain performance. The total probability of failure, Praiure, for each water level, can
be obtained with Equation (22). The results are shown in Table 11 and in Fig. 11 to 13.

Table 11: Relationship between water level and probability of failure with Level 3 method

WATER LEVEL DRAINS EFFECTIVE DRAINS INEFFECTIVE TOTAL PROBABILITY

(m) P(fail | Po=0,9) P(fail | Po=0,1) PeaLure
LEM FLAC LEM FLAC LEM FLAC

75 2,00x10” 5,00x10” 5,96x10° 5,00x10° 5,96x10%  5,45x10°
78 5,30x10” 1,00x10™ 1,92x1072 2,49%x10™ 1,97x10°  2,58x10°
80 1,60x10™ 3,90x10™ 5,11x10* 9,31x10 5,12x10°  9,66x10°
82 4,00x10™ 9,85x10" 9,91x10* 9,85x10™" 9,94x10°  9,85x10™
85 4,40x10° 9,85x10" 9,94x10* 9,85x10" 1,03x10"  9,85x10*

PROBABILITY OF FAILURE - LEVEL 3 METHOD
1.00E+00 / A
1.00E-01 - /7 5 il
1.00E-02 /
1.00E-03 G/,,—-/
1.00E-04

1.00E-05 2

Factor of safety

1.00E-06
75 76 7 78 79 80 81 82 83 84 85

Water Level (m)
| —8— LEM - MONTE CARLO —A— FLAC - MONTE CARLO |

Figure 11: Water level — probability of failure. LEM and FLAC models with Level 3. Total probability
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Figure 12: Water level — probability of failure. LEM and FLAC models with Level 3. Drains effective
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Figure 13: Water level — probability of failure. LEM and FLAC models with Level 3. Drains ineffective



6. Discussion

From the results obtained, it is shown that with LEM method, when drains are effective, the safety
factors are relatively high, even for water levels above the dam crest. This situation seems somehow
unrealistic. On the other hand, with the FLAC model the safety factor is reduced for water levels
higher than the dam crest, which seems to be a more likely situation. The impact of the drain
effectiveness is very strong, as factors of safety are highly influenced by the uplift. The results in
terms of factor of safety show a common trend for different models if drains are ineffective.

When a set of data for strength parameters is available, the question of what values should be
selected as characteristic values to evaluate the factor of safety is very important. Usually mean
values are used, but it is a decision subjected to engineering judgement. Another important thing is
how the factor of safety is defined. As it can be seen in Fig. 7, using the same LEM model of analysis
and the same set of data of strength parameters, the values of the factor of safety can differ
depending upon its definition (as a ratio of forces or as a ratio of strength parameters). So
comparisons of results obtained from distinct models with different definitions of the factor of safety
are not straightforward and should be carefully analyzed.

Regarding the results obtained with Level 2 reliability methods together with the LEM mode, it is the
author’s opinion that the values of the conditional probabilities of failure obtained for the case of
drain effectiveness are unrealistically high for normal water levels under the dam crest, and may be
low for water levels above the dam crest. This is due to the inherent limitations of the methods. In
particular FOSM method seems unable to capture correctly the probabilities of failure. In the case of
drain effectiveness FOSM method gives values of probability with an order of magnitude of 102,
whereas PEM method gives values of 10 and Level 3 Monte Carlo method produces values of 10™
and lowers for water levels below the dam crest. When drains are ineffective all the methods lead to
similar values for water levels above the crest.

Comparing the results obtained with LEM and FLAC models using Level 3 Monte Carlo method, when
drains are effective it is shown that both models give similar values for normal water levels, below
the dam crest. As water levels exceed the dam crest, the probability of failure estimated with FLAC
model approaches a value of 1 while LEM model predicts values below 102, thus showing a very
different behaviour, based on the different stress distribution along the dam foundation-contact
considered in the models. This stress distribution is controlling the opening and propagation of a
crack under the dam. The linear stress distribution assumption embedded in the LEM model seems
to be on the ‘unsafe’ side. A consequence of this is that if overtopping can occur, a more detailed
model of analysis should be prepared to evaluate the dam stability.

7. Conclusions

In this paper a probabilistic stability assessment has been carried out for an 80 m high gravity. Two
different 2D models of analysis have been considered: a Limit Equilibrium Model and an elastic
deformable body model implemented in the code FLAC. Factors of safety have been calculated for 5
different water levels and for two conditions of the drainage system effectiveness, thus showing the
strong impact of this on the dam stability. How the factor of safety is defined and what characteristic
values are used in its evaluations are key issues of the problem.

The probability of failure has been estimated as the strength parameters of friction angle and
cohesion have been considered as random variables. The adaptation of probability distributions to
parameters in dam engineering should be done carefully and it should be examined in the light of
engineering judgement, so the physical meaning of the parameters is not lost in the mathematical
process of fitting distributions.



Two different Level 2 methods, based on the first two moments of the probability distributions of the
random variables have been tested. FOSM method seems inadequate to handle successfully the non
linearities present in the problem as the probabilities estimated with this method are unrealistically
high. The Point Estimate Method provides a better approximation but the probabilities still seem to
be too high to be reliable.

Level 3 Monte Carlo simulation method has been used with both LEM and FLAC models of analysis.
For water levels below the dam crest both models show similar results and the probabilities of failure
are much lower than with Level 2 methods. For water levels above the crest, the LEM model seems
to be on the ‘unsafe’ side, as it predicts lower probabilities of failure than FLAC model. In any case,
the Level 3 Method is preferable and should be used whenever possible.

More research is needed to handle uncertainties, as parameter uncertainty is just a part of the
problem, but other sources of uncertainty have become present explicitly throughout the process.
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1. Foreword

In this context of dam safety engineering, risk-based analysis techniques are being developed,
offering not only a complementary view to the classical approach to dam safety, but also an entire
new tool that can help robust management of dam safety, including some useful criteria to
rationalize dam investments and a better understanding of the risk posed by dams, see Escuder et al

[1].

Risk analysis methodologies need risk quantification. For an initial state of the dam-reservoir system,
and for a certain failure mode, this risk quantification requires the estimation of both the probability
of the loading scenarios and the conditional probability of the associated response of the dam-
reservoir system, together with the estimation of the consequences.

In dam engineering, the main loading scenarios are those of hydrological and seismic nature, so the
estimation of the probability of floods and earthquakes has been on the focus of researchers and
engineers for a long time. The estimation of the conditional probability of the response of a system
for a certain loading scenario can be done with the help of reliability theory, which is based on a
powerful mathematical framework that has been used successfully on the field of structural analysis.
The estimation of consequences (in terms of loss of lives and impacts on economy), for a certain
response of the dam-reservoir system represents a much more recent landmark in dam safety
engineering. However, the development of this issue during the last decades of the past century has
been remarkable.

Following the distinction between the three components of risk aforementioned, the problem
proposed herein deals with the second of them: conditional probability of the response of a dam-
reservoir system for a certain loading scenario. The conditional probability can be assessed by means
of three different methods, namely historical references, probability elicitation, and reliability
analysis. Probability estimation of the response of complex systems such as dams is an issue
subjected to much controversy and discussion by dam engineering community.

2. Aim of Theme C

The objective of Theme C is to obtain relationships between water levels, factors of safety and
probabilities of failure for an 80 m high gravity dam considering the failure mode of sliding along the
dam foundation contact. This can be done using models of analysis for the dam-foundation system
together with reliability techniques that allow for uncertainties in the parameters, using random
variables.

For the purpose of comparison and evaluation of advances in this field, the dam proposed is taken
from the Theme 2 of the 1999 ICOLD Benchmark.

The proposed exercise is to analyse the dam with a 2D model. The model should be chosen by
participants and it can be a limit equilibrium model or a deformable body model. The factor of safety
against sliding is then calculated for several water levels.

Following this step, participants should estimate the probability of failure for the sliding failure mode
using at least one Level 2 reliability method and a Level 3 Monte Carlo simulation method.

The charts provided by different teams are compared and analysed by formulators.



3. Formulation of the problem
In this section the problem to be solved is summarized.
3.1. Geometry of the dam

The geometry of the dam is depicted in Fig. 1. The full geometry including the foundation is shown in
Fig. 2. The foundation has a rectangular shape with height of 80 m and a total length of 300 m (120 m
upstream, 60 m under de dam, 120 m downstream).
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Figure 1: Dam geometry.

Figure 2: Dam and foundation geometry.

3.2. Material properties
Data on material properties for dam and foundation are given in Table 1. Data for material properties

for dam-foundation interface are given in Table 2. Friction angle and cohesion at the dam-foundation
interface are considered as random variables. Available data in the form of fifteen pairs of values are
given in Table 3.



Table 1: Data for dam and foundation materials.

MATERIAL PARAMETERS

DAM FOUNDATION

Young’s modulus (MPa)
Poisson’s ratio

Mass density (kg/m3)
Compressive strength (MPa)

Tensile strength (MPa)

Strain at peak compressive strength

Strain at end of compressive softening curve

Fracture energy (N/m)

24000 41000

0,15 0,10
2400 2700
24 40

1,5 2,6
0,0022  0,0025
0,10 0,15
150 200

Table 2: Data for dam-foundation interface.

MATERIAL PARAMETERS VALUE
Shear stiffness (MPa/mm) 20

Tensile strength (MPa) 0,0

Friction angle (°) See Table 3
Cohesion (MPa) See Table 3
Dilatancy angle (°) 0
Softening modulus (MPa/mm) -0,7

Table 3: Data for friction and cohesion at the interface.

SAMPLE FRICTION COHESION
ANGLE (°)  (MPa)
1 45 0,5
2 37 0,3
3 46 0,3
4 45 0,7
5 49 0,8
6 53 0,2
7 54 0,6
8 45 0,0
9 49 0,1
10 60 0,2
11 63 0,2
12 62 0,4
13 60 0,7
14 56 0,1
15 62 0,4




3.3. Loading

The considered loadings are self-weight, hydraulic pressure acting on the upstream face of the dam
and uplift acting on the base of the dam. Five water levels are considered: 75, 78, 80 (crest level), 82
and 85 m. Development of a crack at the interface is considered and uplift pressure is updated
accordingly, as it is shown in Fig. 3. Two cases of drain effectiveness are considered, with discrete
probabilities associated:

e Case A: Drains effective (probability of 0,90)

e Case B: Drains not effective (probability of 0,10)

drain
axis

I crack tip
— -

P=peh I 0.2P PI

crack tip

Case A. Drains effective Case B. Drains ineffective

Figure 3: Loading cases.

3.4. Results to be provided

Considering the failure mode of sliding along the dam foundation contact, the results are divided in
three parts.

e Part 1: Relationship between water levels and factor of safety.

e Part 2: Relationship between water level and probability of failure calculated with
Level 2 methods.

e Part 3: Relationship between water level and probability of failure calculated with
Level 3 methods.



4. Participants

Theme C has had 8 contributions which are listed in Table X. They come from research centres (3),
universities (3), a consultant company (1), and a mixed team formed by a consultant company and a
university (1).

Table 4: Contributors to Theme C.

ID AUTHORS INSTITUTION COUNTRY
RSE Faggiani, G; Frigerio, A.; Masarati, Ricerca Sistema Energetico ITALY

P.; Meghella, M.
UTCB Popovici, A.; llinca, C. Tech. University of Bucharest ROMANIA
SC-AG Touileb, B. Sogreah Consultants FRANCE
RIT Krounis, A.; Johansson, F. Royal Institute of Technology SWEDEN
VNIIG Shcherba, D. JSC “VEDENEEV VNIIG” RUSSIA
UPM Cabrera, M.; Jiménez, R. Polytechnic University of Madrid SPAIN
UPVv Gasco, M. Polytechnic University of Valencia SPAIN
iPresas Escuder, I.; Altarejos, L.; Serrano, A. iPresas Risk Analysis & Polytechnic SPAIN

University of Valencia

The relatively high number of participants on Theme C shows the interest of the engineering
community in the field of the reliability-based approach to dam safety.



5. Models of analysis

The models of analysis for the sliding failure mode used by contributors are listed in Table X. They
have been characterized by their main features:

e Type of model of analysis
e Crack opening and propagation criteria at the dam-foundation contact
e Type of model for the dam-foundation shear strength

e Factor of safety definition

5.1. Type of model of analysis

All contributors have considered at least a 2D rigid body limit equilibrium model (LEM). Despite the
strong evolutions developed in more sophisticated, finite element-based models, LEM is still
recognized by contributors as the most popular and accepted method to evaluate the safety against
sliding, see Krounis & Johansson [X]. In this model the dam is idealized as a beam with variable
section. The normal stress along horizontal planes is assumed to vary linearly, see Frigerio et al [X].
Two teams have considered deformable body models to evaluate the crack length, implemented in
Finite Element Model codes (FEM).

In particular, UTCB team has used an elastic FEM model implemented in code SAP2000 to compare
the crack length with that estimated with LEM. VNIIG team has used a FEM model implemented in
code ANSYS to calculate the crack length, and then the sliding stability is evaluated using LEM
equations.

One team, iPresas, has considered a 2D elastic Finite Difference Model (FDM) model implemented in
code FLAC 2D in addition to the LEM model.

5.2. Crack opening and propagation criteria at the dam-foundation contact

In LEM models the evolution of the horizontal crack is simulated reducing accordingly the effective
area at the dam-foundation contact that provides resistance to overturning moment. The uplift is
updated along the cracked length according to Fig. X. According to given data, tensile strength is zero
at the interface.

In FEM model used by UTCB no crack opening and propagation is simulated, as the interface model
seems to be of ‘glued’ type, where grid points between dam and foundation are kept together, and
tensile stresses are allowed to develop.

In the FEM model used by VNIIG a bilinear cohesive zone model (the Alfano & Criesfeld traction-
separation model) is adopted for the interface, with a maximum tensile strength of 0,3 MPa.

In the FDM model used by iPresas, the crack opening and propagation is simulated. If the magnitude
of the tensile normal stress exceeds the bond strength (which is zero in this case) at any point the
bond breaks for that point and it behaves thereafter as unbounded (separation and slip between
contact surfaces allowed).



5.3. Type of model for the dam-foundation shear strength contact

When using LEM model, the failure envelope defined by the Mohr-Coulomb model has been adopted
by all contributors. The shear strength is defined by friction coefficient, tan(¢), and cohesion, c,
acting along the effective contact area, which is the part under compressive stresses.

The same model has been used by iPresas in the FLAC 2D model.

5.4. Factor of safety definition

The factor of safety definition used by all contributors using LEM models is that of the ratio between
shear strength force and driving force along the dam-foundation contact, as shown in Equation (1).

R
FS=o (1)

The driving force is the water pressure acting on the upstream slope of the dam. The shear strength,
R(N/m), is calculated with Equation (2).

R=(N-U)tgp+Bxc (2)

where:

N (N/m) is the sum of vertical forces acting on the dam-foundation contact surface.
U (N/m) is the uplift.

B (m?/m) is the area in compression in the dam-foundation contact.

¢ (°) is the friction angle in the contact.

c (Pa) is the cohesion in the contact.

This definition of shear strength has strong assumptions implicit, as it is assumed that the ultimate
capacity is achieved at every point of the sliding surface and that the cohesion acts along the surface
without any variation, see Krounis and Johansson [X].

When stability is analyzed with a finite difference or finite element numerical model, it is common to
adopt an alternative definition, where the factor of safety is , the ratio between the value of the
parameter controlling the stability, ¢, (or c), and the value of the parameter when failure occurs,
@raiL, (Or crar). In Equation (3) a linear degradation from values (o, c) to (0,0) is assumed.

Fs= 0=~ )

@rair - CraiL

This is the definition adopted by iPresas team for the FLAC model. To allow consistent comparison
between FS values calculated with LEM and FLAC, two values of FS have been computed with the
LEM model for each water level, according to Equations (1) and (3).

A key point related to the factor of safety evaluation is the decision on what values of friction angle
and cohesion should go into the calculations.



Table 5: Models of analysis.

ID MODEL CRACK OPENING AND SLIDING MODEL FS DEFINITION
PROPAGATION AT THE
INTERFACE
RSE 2D LEM If 5:<0 (tensile) a crack Mohr-Coulomb FS=R/S
develops (5,=0 along
crack)
UTCB 2D LEM If 5<0 (tensile) a crack Mohr-Coulomb FS=R/S
develops (5,=0 along
crack)
2D FEM Linear Crackis assumed to have Not considered FS not calculated.
elastic the length of the area with  (‘glued’ interface) The model is used
(SAP2000) tensile stresses to evaluate crack
length
SC-AG 2D LEM If 5:<0 (tensile) a crack Mohr-Coulomb FS=R/S
(CADAM) develops (5,=0 along
crack)
RIT 2D LEM Crack opening seems to Mohr-Coulomb FS=R/S
affect only uplift values
VNIIG 2D LEM Calculated with FEM Mohr-Coulomb FS=R/S
model
2D FEM Bilinear cohesive, zone FS not calculated.
(ANSYS) model (Alfano&Criesfeld), The model is used
With 6max = 0,3 MPa to evaluate crack
length
UPM 2D LEM If 5:<0 (tensile) a crack Mohr-Coulomb FS=R/S
develops (5,=0 along
crack)
upv 2D LEM If 5<0 (tensile) a crack Mohr-Coulomb FS=R/S
develops (6,=0 along
crack)
iPresas 2D LEM If 5:<0 (tensile) a crack Mohr-Coulomb FS=R/S
develops (5,=0 along &
crack) FS = @/ @ear
2D FDM If 5:<0 (tensile) a crack Mohr-Coulomb FS = @/ Qral
(FLAC) develops (c,=0 along

crack)




6. Variables

6.1. Friction angle
The statistical analysis of given data for friction angle proposed by contributors is shown in Table X.

Five teams (UTCB, SC-AG, VNIIG, UPV and iPresas) have considered the friction angle, ¢, as a random
variable. Two teams (RIT and UPM) have considered the friction coefficient, tang, as the random
variable. Another team (RSE) has considered both cases.

All contributors have considered that the friction angle, or the friction coefficient, is normally
distributed. One contributor (VNIIG) has considered the Beta distribution for the friction angle.

Although in some cases the values have not been explicitly given, seems that all contributors have
considered the mean and standard deviation values from the sample given.

Four teams (UTCB, VNIIG, UPV and iPresas) have considered a truncation in the normal probability
density distribution, with a minimum and a maximum value.

Most of the teams have considered the mean value as the characteristic value that goes into the
evaluation of the factor of safety. One team (SC-AG) has considered in addition a lower and an upper
value. One team (UPM) has done an in-depth analysis of possible characteristic values according to
several approaches, including Eurocode 7.

Table 6: Statistical analysis of data for friction angle.

ID VAR. PROB. MEAN S.D. MIN MAX CHAR.
DIST VALUE
RSE [0) Normal N/S N/S -0 +00 N/S
tgo Normal N/S N/S -0 +00 N/S
UTCB [0) Normal 52,4° N/S 25° 80° 52,4°
SC-AG ¢ Normal 52,4° N/S -00 +00 48,36° lower
52,40° aver.

56,44° upper

RIT tgo Normal 1,36 0,39 -00 +00 1,36

VNIIG 0 Normal 52,4° 7,99° 10° 70° N/S
Beta

UuPM tgo Normal 1,36 0,39 -00 +00 1,24

UPv [0) Normal 52,4° 8° 28,4° 76,4° 52,4°

iPresas [0) Normal 52,4° 7,99° 28,4° 76,4° 52,4°

N/S: Not specified



6.2. Cohesion

The statistical analysis of given data for cohesion proposed by contributors is shown in Table X. Four
teams (RIT, UPM, UPV and iPresas) have considered that the cohesion, c, is lognormally distributed.
Two teams (UTCB and SC-AG) have considered that the cohesion is normally distributed. One
contributor (VNIIG) has considered both distributions, normal and lognormal. One contributor (RSE)
has considered three possible distributions for the cohesion: normal, lognormal and Rayleigh.

Seems that all contributors have considered the mean and standard deviation values from the
sample given. The UTCB team has considered an asymmetrical truncation in the normal distribution.
Two teams (UPV and iPresas) have considered an upper truncation for the lognormal distribution.

Most of the teams have considered the mean value as the characteristic value that goes into the
evaluation of the factor of safety. Again, team from SC-AG has considered in addition a lower and an
upper value, and UPM team has done an analysis of possible characteristic values, as with friction.

Table 7: Statistical analysis of data for cohesion.

ID VAR. PROB. MEAN S.D. MIN MAX CHAR.
DIST (MPa) (MPa) (MPa) (MPa) VALUE
(MPa)
RSE C Normal N/S N/S -0 +00 N/S
C Rayleigh N/S N/S 0 +00 N/S
C Lognormal N/S N/S 0 +00 N/S
UTCB C Normal 0,367 N/S 0 0,8 0,367
SC-AG c Normal 0,367 N/S -00 400 0,242 lower
0,367 average
0,492 upper
RIT c Lognormal 0,48 0,40 0 +00 0,37
VNIIG C Normal 0,367 0,246 N/S +00 N/S
Lognormal 0,367 0,246 0 +00 N/S
UPM c Lognormal 0,367 0,247 0 400 0,274
upv c Lognormal 0,375 0,237 0 1,5 0,375
iPresas ¢ Lognormal 0,367 0,247 0,367
c Lognormal 0,375 0,368 0 2,0

N/S: Not specified

6.3. Correlation between variables

All participants considered the random variables as independent, without any correlation between
them.



7. Reliability methods
7.1. Level 2 methods

Level 2 methods of analysis considered by contributors are summarized in Table X. In all cases, these
methods have been applied together with Limit Equilibrium Models. All contributors have considered
the FOSM Taylor method. In two cases (SC-AG and UPM) this has been the only Level 2 method used.
Two teams (UPV and iPresas) have considered in addition to FOSM the Point Estimate Method. Two
teams (RSE and RIT) have considered in addition to FOSM the Hasofer-Lind Method. Finally, two
teams (UTCB and VNIIG) have considered all three methods (FOSM, PEM and Hasofer-Lind).

Table 8: Level 2 reliability methods used by contributors.

ID FOSM TAYLOR POINT ESTIMATE HASOFER & LIND
METHOD METHOD
RSE YES NO YES
uUTCB YES YES YES
SC-AG YES NO NO
RIT YES NO YES
VNIIG YES YES YES
UPM YES NO NO
UpPv YES YES NO
iPresas YES YES NO

7.2. Level 3 methods

All contributors have conducted Level 3 analyses with Monte Carlo simulation method. In one case
(VNIIG) sampling has been done with Latin Hypercube as well as with pure Monte Carlo sampling.

Table 9: Level 3 reliability methods used by contributors.

ID LEVEL 3 METHOD TOOL NUMBER OF SIMULATIONS
RSE Monte Carlo MATLAB 1.000.000
UTCB Monte Carlo MATHCAD Not specified
SC-AG Monte Carlo CADAM 250.000
RIT Monte Carlo MATLAB Not specified
VNIIG Monte Carlo 1.000.000
Latin Hypercube 1.000.000
UPM Monte Carlo 100.000
uPv Monte Carlo @RISK Variable [10.000 - 1.000.000]

iPresas Monte Carlo @RISK Variable [10.000 - 10.000.000]




8. Results
8.1. Part 1: Relationship between water levels and factor of safety

Results of relationships obtained by contributors between water levels and factors of safety are
plotted in Fig. 4 (drains effective) and Fig. 5 (drains ineffective). In these figures, results from six
teams are plotted (SC-AG, RIT, VNIIG, UPM, UPV and iPresas). Results from the other two teams (RSE
and UTCB) have been represented in a different figure, as they follow a different approach.

The iPresas team has provided three results. One corresponds to LEM with the classical FS definition
as the ratio between resistant and driving forces. The other two results correspond with an
alternative definition of the factor of safety as the ratio between the characteristic value of a
strength parameter and the degraded value of the parameter that leads to failure. One is for LEM
model and the other is for FLAC model.

8.1.1. Factor of safety. Drains effective

From Fig. 4 it can be seen that very close values of the factor of safety have been obtained as long as
similar models and assumptions are made (SC-AG, RIT, UPV, iPresas).

The UPM calculates a slightly less factor of safety as the characteristic values used for (@,c) or
(tang,c) are not mean values but lower values.

The VNIIG team provides values much lower than the rest. Maybe this is due to the fact that
computed crack length is zero with LEM models while some cracking is predicted with the cohesive
zone model used by VNIIG, even for water level of 75 m. With this model the stress distribution at
the contact is not linear, so some stress concentration at the tip of the crack is modelled.

Factor of safety
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X— iPresas (FS=c/c_fail) —*— iPresas (FS=c/c_fail) FLAC

Figure 4: WL — FS. Drains effective.



When the alternative definition of FS is considered, values are slightly less but the shape of the curve
is the same, showing similar behaviour. When a deformable body model like FLAC is used, stresses at
the contact are not linear, showing stress concentrations at the heel and at the toe. With this model,
as long as a crack is not developed, the calculated values of the factor of safety match very well with
those of LEM model.

While LEM models do not predict cracking even for severe overtopping (water levels 5 m over the
dam crest), the FLAC model predicts starting of cracking for water levels close to the dam crest, and
strong cracking propagation for 2 m overtopping (water level at 82 m).

8.1.2. Factor of safety. Drains ineffective

From Fig. 5 it can be seen that very close values of the factor of safety have been obtained as long as
similar models and assumptions are made (SC-AG, UPV and iPresas predicts almost the same values,
with failure taking place for water levels close to the dam crest). The results from RIT team differ in
this case, showing higher factors of safety than the rest. This is considered to be from some
assumption in the calculation of the factor of safety under cracking condition, maybe regarding the
effective contact area where shear strength is mobilized.

The alternative definition of the factor of safety leads to lower values than the classical definition
when FS>1 and to higher values when FS<1. It can be seen in Fig. X that the curves for both
definitions of the factor of safety cross each other at FS=1, as it was expected, so the failure
condition is well captured regardless which definition of FS is used, when the LEM model is
considered.

It also very interesting to notice that when cracking occurs, the LEM model leads to lower safety
factors than the FLAC model.
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Figure 5: WL — FS. Drains ineffective.



The results from VNIIG team show lower safety factors than the rest for water levels under the dam
crest.

8.1.3. Factor of safety. Other cases

In Fig. 6 results from RSE and UTCB teams are presented.

RSE team has provided averaged values of the factor of safety: FS = 0,9xFS(drains effective) +
0,1xFS(drains ineffective).

Team from UTCB has performed calculations of the factor of safety with a single weighted uplift
distribution where the value of uplift at the drain line is 0,9xvalue with drains effective + 0,1xvalue
with drains ineffective.

These results are shown separately as they cannot be compared in a homogeneous way with the
results provided by other teams.
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Figure 6: WL —FS. Combined values with drain performance probabilities.



8.2. Part 2: Relationship between water level and probability of failure with Level 2
methods: FOSM Taylor Method

Results of relationships obtained by contributors between water levels and probabilities of failure are
plotted in Fig. 7 (drains effective) and Fig. 8 (drains ineffective).

In all cases, the model of analysis used has been the LEM model.

Five teams have provided the results explicitly for both drain performance cases (RIT, VNIIG, UPM,
UPV and iPresas) and also for the total probability taking into account probabilities of drain
performance, while the other three (RSE, UTCB and SC-AG) have provided the only the total value of
probability.

8.2.1. FOSM Taylor. Drains effective

From Fig. 7 it can be seen that very close values of the probability of failure have been obtained by
three teams (RIT, UPV and iPresas). UPM provides lower values while probabilities estimated by
VNIIG are slightly higher.

In any case the shape of the curves shows a very smooth increase of probabilities with water levels.

A key point to consider is the value of the probabilities itself, with values close to 10-2 for most water
levels, which seem unrealistically high.

It is a surprising thing that RIT and UPM values differ despite the fact that both of them have
considered (tang,c) as random values instead of (¢,c),as the rest of the teams have done.
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Figure 7: WL — Pf (FOSM). Drains effective.



8.2.2. FOSM Taylor. Drains ineffective

The curves in Fig. 8 show clearly a difference between models used by RIT and VNIIG and the rest
under cracked conditions.

Under drain system failure probabilities predicted are extremely high, in the range 10-2 to 1.
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Figure 8: WL — Pf (FOSM). Drains ineffective.

8.2.3. FOSM Taylor. Total probability

The curves in Fig. 9 show the results of total probability from the 8 contributors.

Good agreement is found between all teams for water levels of 75 and 78 m. For higher water levels
the results differ, but by less than an order of magnitude.

It is very interesting to check the effect of considering (tang,c) or (¢,c) as random variables, as it has
been shown by RSE team, which provides both curves. As it can be seen, at least for the dam under
study, the effect is negligible.

It can also be seen that SC-AG and iPresas have obtained almost exactly the same results.

The total probability moves in the range 10-3 to 10-1.
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Figure 9: WL — Pf (FOSM). Total probability.

8.3. Part 2: Relationship between water level and probability of failure with Level 2
methods: Point Estimate Method

Four teams have done calculations of probabilities of failure with the Point Estimate Method (UTCB,
VNIIG, UPV and iPresas). Three of them (VNIIG, UPV and iPresas) have provided the results explicitly
for both drain performance cases and also for the total probability taking into account probabilities
of drain performance.

As it has been mention before, team from UTCB has performed calculations using a single weighted
uplift distribution where the value of uplift at the drain line is 0,9xvalue with drains effective +
0,1xvalue with drains ineffective. According to this, results of probability have been provided.

Results of relationships obtained by contributors between water levels and probabilities of failure are
plotted in Fig. 10 (drains effective) and Fig. 11 (drains ineffective).

In all cases, the model of analysis used has been the LEM model.

8.3.1. Point Estimate Method. Drains effective

From Fig. 10 it can be seen that very close values of the probability of failure have been obtained by
three teams (VNIIG, UPV and iPresas).

Comparing Fig. 10 with Fig. 7 it can be seen that probabilities estimated with the Point Estimate
Method are slightly lower than those estimated with FOSM. The difference is roughly by half an
order of magnitude.

In any case, the probabilities for water levels under the dam crest seem unrealistically high.
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Figure 10: WL — Pf (PEM). Drains effective.

8.3.2. Point Estimate Method. Drains ineffective

The curves in Fig. 11 show again the difference between models of analysis used by VNIIG and the
rest under cracked conditions. Under drain system failure probabilities predicted are extremely high,
in the range 10-2 to 1. Results are very similar to those obtained with FOSM.
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Figure 11: WL — Pf (PEM). Drains ineffective.



8.3.3. Point Estimate Method. Total probability

The curves in Fig. 12 show the results of total probability from all 4 contributors.

The same pattern identified before for FOSM method appears here, as good agreement is found
between all teams for water levels of 75 and 78 m. For higher water levels the results differ, but by
less than an order of magnitude.

The total probability moves in the range 5x10-3 to 10-1.
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Figure 12: WL — Pf (PEM). Total probability.

8.4. Part 2: Relationship between water level and probability of failure with Level 2
methods: Hasofer-Lind Method

Four teams have done calculations of probabilities of failure with the Hasofer-Lind Method (RSE,
UTCB, RIT and VNIIG). Two of them (RIT and VNIIG) have provided the results explicitly for both drain
performance cases and also for the total probability taking into account probabilities of drain
performance.

Again, UTCB has performed calculations using a single weighted uplift distribution where the value of
uplift at the drain line is: (0,9%value with drains effective) + (0,1xvalue with drains ineffective).

Results of relationships obtained by contributors between water levels and probabilities of failure are
plotted in Fig. 13 (drains effective) and Fig. 14 (drains ineffective).

In all cases, the model of analysis used has been the LEM model.



8.4.1. Hasofer-Lind Method. Drains effective

From Fig. 13 it can be seen that similar values of the probability of failure have been obtained by
both teams (RIT and VNIIG).

In any case the shape of the curves shows again a very smooth increase of probabilities with water
levels.

As it happens with previous Level 2 methods, the values of the probabilities are in the range 10-3 to
10-2 for most water levels, which seem unrealistically high for the lower water levels.
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Figure 13: WL — Pf (Hasofer-Lind). Drains effective.

8.4.2. FOSM Taylor. Drains ineffective

The curves in Fig. 14 show a similar pattern in the results provided by RIT and VNIIG.

As it was the case with other Level 2 methods, under drain system failure probabilities predicted are
extremely high, but not reaching a value of 1. They keep in the range from 10-2 to 10-1. In the case
of VNIIG this is due to the crack opening and simulation model, with provides a limited crack length

8.4.3. FOSM Taylor. Total probability

The curves in Fig. 15 show the results of total probability from all 4 contributors.

Results from all teams have a remarkable dispersion as no team has obtained the same results and
the maximum and minimum values for each water level vary by an order of magnitude.

As it has been shown with FOSM Taylor, again it is very interesting to check the effect of considering
(tang,c) or (p,c) as random variables, according to results provided by RSE team. As it can be seen, at
least for the dam under study, the effect is negligible, above all for the higher water levels.



The total probability moves in the range 10-3 to 10-1.
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8.5. Part 3: Relationship between water level and probability of failure with Level 3
methods

All 8 teams have provided results of probability of failure with Level 3 methods. As with this method
all the information of the Probability Distribution Functions (PDF) of the random variables is
transferred into the performance function, to allow consistent comparison between the results
provided, the results have been grouped according to the PDFs used by contributors.

Six teams (RSE, RIT, VNIIG, UPM, UPV and iPresas) have considered a Normal PDF for friction angle
(or friction coefficient) and a Lognormal PDF for cohesion. Five of them (RIT, VNIIG, UPM, UPV and
iPresas) have provided the results explicitly for both drain performance cases and also for the total
probability taking into account probabilities of drain performance.

Four teams (RSE, UTCB, SC-AG and VNIIG) have considered a Normal PDF for friction angle (or friction
coefficient) and a Normal PDF for cohesion as well. All of them have provided the results for the total
probability taking into account probabilities of drain performance. Again, UTCB has performed
calculations using a single weighted uplift distribution where the value of uplift at the drain line is:
(0,9%value with drains effective) + (0,1xvalue with drains ineffective).

All teams have used the LEM model, and the iPresas team has used in addition a deformable body
model implemented in finite difference code FLAC 2D.

8.5.1. Level 3. Friction Normal and cohesion Lognormal. Drains effective

From Fig. 16 it can be seen that when tano is used as a random variable instead of ¢, higher values of
probability are obtained systematically, as shown by results from RIT and UPM teams. The rest of the
curves in Fig. 16 have been obtained considering ¢ as a random variable ,showing similar values of
the probability of failure, except for water level 75 m, where results from UPV and iPresas teams are
much lower than the rest by several orders of magnitude. The reason for this may rely in the
truncation of the PDF of the friction angle considered by UPV and iPresas teams, which prevents
sampling from lower values of friction angle.

With FLAC model the results are similar to those with LEM model for water levels below the dam
crest. For higher water levels, when FLAC model is used, higher probabilities of failure are obtained,
as unstable crack propagation is predicted for water level of 82 m and higher. So FLAC model predicts
a brittle behaviour of the dam for water levels over the crest.

8.5.2. Level 3. Friction Normal and cohesion Lognormal. Drains ineffective

With drains ineffective the probabilities of failure are much higher. Results from UPM, which
calculates with tan@ as a random variable instead of ¢, give higher probabilities of failure, but the
effect is less pronounced that in the case of drains effective.

Results from RIT, which correspond to the lower probability of failure, though based on tang
hypothesis, are somehow distorted due to the treatment on the cracked zone in the stability
calculations.

Results from VNIIG model, which predicts stable crack development with relatively short lengths for
any water level under the hypothesis of drains ineffective, give, in general, lower values of
probability. Among the other results, FLAC model predicts the lower probabilities of failure for water
levels under the crest of the dam.
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8.5.3. Level 3. Friction Normal and cohesion Lognormal. Total probability

The curves in Fig. 18 show the results of total probability from the 6 contributors.
Stronger differences are found for the lower water levels.

The increase in values of probability derived from considering (tang,c) instead of (¢,c) as random
variables, is confirmed with the results provided by RSE team.

The total probability for water level 75 m moves in the range 5x10-6 to 2x10-3.
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Figure 18: WL — Pf (Monte Carlo). Friction Normal and cohesion Lognormal. Total probability.

8.5.4 Level 3. Friction Normal and cohesion Normal. Total probability

Results from the four teams (RSE, UTCB, SC-AG and VNIIG) that have considered a Normal PDF for
friction angle (or friction coefficient) and a Normal PDF for cohesion are shown in Fig. 19. The results
correspond to total probability, considering the drain performance probabilities.

The probabilities tend to be higher than in previous hypothesis. As an exception, the curve from SC-
AG team show low probability for water levels of 75 m (null, and so not shown in the graph) and of
78 m.

RSE team has made a very interesting exercise of comparing different PDF for cohesion (Normal,
Rayleigh and Lognormal), in combination with two possibilities for friction treatment as a random
variable (tang or ). The results are shown in Fig. 20. Previous results are confirmed as higher
probabilities are obtained when tane is used instead of .
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9. Discussion

All contributors have made very interesting approaches to the problem posed as Theme C of the Xl
Benchmark Workshop.

The first conclusion that can be derived from the Benchmark is that participants have made different
decisions on every step of the process, and those decisions have had its reflections in the dispersion
of the results. This comes to show that when an engineering problem, even a relatively simple,
straight, and well-known one, is combined with reliability techniques, the results should be analyzed
in the light of sound engineering judgement to get meaningful and useful information to assess the
dam safety.

The discussion has been structured according to:
e Decisions on models of analysis
e Decisions on random variables
e Decisions on reliability methods

e Results obtained

9.1. Decisions on models of analysis

All 8 teams have used at least a Limit Equilibrium Model of analysis, and most participants have
chosen the same approach to evaluate the crack opening and propagation.

Team from VNIIG has used a fracture mechanics approach to evaluate the crack length which is
different from the rest. It has been shown that this model produces results which are different from
the rest. Cracking is predicted even for the lowest water level of 75 m with drains effective, which is
not the case in any other model. On the other hand, the cohesive zone model used predicts cracking
stabilization even for the highest water level of 85 m under the condition of drains ineffective, while
the other models predict crack propagation from heel to toe, without stabilization.

iPresas team has used two models, the classical LEM and a deformable body model implemented in
FLAC 2D code. The crack opening and propagation criteria has been the same as for LEM models,
being the only difference that tensile stresses are computed on a non-linear basis, allowing for stress
concentrations at the heel and at the toe. This model matches very well with LEM model as long as
tensile stresses are not present (this is to say, for lower water levels). When tensile stress appears,
FLAC model predicts more severe crack propagation that LEM model and so higher probabilities of
failure.

Another important thing is how the factor of safety is defined. As it can be seen in Fig. 4 and in Fig. 5,
using the same LEM model of analysis and the same set of data of strength parameters, the values of
the factor of safety obtained by iPresas tam differ depending upon its definition (as a ratio of forces
or as a ratio of strength parameters). So comparisons of results obtained from distinct models with
different definitions of the factor of safety are not straightforward and should be carefully analyzed.

9.2. Decisions on random variables

The decision on how friction is treated (if the random variable is the friction angle, @, or the friction
coefficient, tang), has some impact on the results obtained. Different teams have done different
approaches. According to the results obtained, seems that when tane is selected, and a Normal PDF
is assumed, the probabilities are higher than when ¢ is selected and considered normally distributed.



Another decision is what PDF may be reasonable to use. In Theme C an unusually high number of
data were provided to make the fitting of distributions process easier, but it is not always the case in
real world problems, where few data are available (if any). Even with this number of data, several
distributions have been suggested or considered by contributors (Normal, Lognormal, Rayleigh and
Beta distributions).

Decisions related to PDFs are not only linked to what distributions are selected but also to the
physical meaning of the adaptation. When an unbounded PDF as the Normal is used, a decision on its
truncation becomes a key point of the process, as it has been shown by the results obtained. Again,
lot of engineering judgement comes into play when assessing the minimum values to be adopted for
truncation of a PDF.

Another decision that has been put into question is how to treat the probabilities of the drainage
system condition. One team has proposed to use a probability-weighted uplift distribution in the
dam-foundation contact, while the rest have solve the problem considering two drainage system
conditions, and the total probability has been obtained combining the individual probabilities in an
event tree fashion, which is considered a preferable approach.

When calculating the factor of safety, another key point is the characteristic value that should go into
the formula. A discussion on this point has been included in UPM paper, see Cabrera-Carpio &
Jiménez-Rodriguez [7]. This decision has again a strong impact on the numerical value of the factor of
safety and so with dam safety decision that may be based on it.

9.3. Decisions on reliability methods

The decision on what reliability method is used is another important issue. Analysis with Level 2
methods is relatively easy to perform and, as long as the number of variables is low, it is not much
time-consuming. Level 3 Monte Carlo simulation methods give more precise results but when the
models of analysis are complex the computing effort is much higher.

Level 2 and Level 3 methods have been used in combination with LEM model of analysis. The iPresas
team has presented a solution using Level 3 Monte Carlo simulation together with a FLAC 2D.
Probabilities have been computed using the limit curve concept (as a 2D degeneration of the more
general n-dimensional Limit Hyper-Surface concept when only two random variables are present).

The shape of the water level-probability curve obtained with FLAC model seems more realistic in
principle than those obtained with LEM.

9.4. Results obtained

The factors of safety obtained with LEM model in the hypothesis of drains effective do not show
much sensitivity to water level, even for water levels above the dam crest. Good agreement is found
between different teams, with values in the range of 3,5 to 1,5. With FLAC model the factor of safety
reaches unity for 2 m overtopping, while LEM models predict stability.

When drains are not effective, factors of safety reach a value of 1 near the dam crest level. FLAC and
LEM models lead to similar results.

The impact of the choice of the characteristic value is very strong, as it can be seen from UPM results
in Fig. 4.

The impact of the definition of the factor of safety is also very important, as it can be seen from
iPresas curves in Fig. 4.

In general, good agreement between results obtained and engineering practice values for safety
factors is found.



In terms of the probabilities of failure obtained with Level 2 methods, good agreement is found
between different teams. It can be observed that the different decisions made have produced a
spread of the results in a bandwidth of an order of magnitude, see Fig. 7 to 15.

A major aspect to be highlighted is the disproportionately high values of probabilities obtained with
Level 2 methods for water levels below the dam crest with these reliability methods, with values
systematically higher than 10-3.

Another result is that probabilities obtained with the different Level 2 methods do not differ
significantly, even for the case when drains are effective.

Level 3 methods provide lower probabilities of failure, with values below 10-3, when drains are
effective. When drains are ineffective results show that probabilities are higher than 10-3.

Comparing the results obtained with LEM and FLAC models using Level 3 Monte Carlo method, when
drains are effective it is shown that both models give similar values for normal water levels, below
the dam crest. As water levels exceed the dam crest, the probability of failure estimated with FLAC
model approaches a value of 1 while LEM model predicts values below 10, thus showing a very
different behaviour, based on the different stress distribution along the dam foundation-contact
considered in the models. This stress distribution is controlling the opening and propagation of a
crack under the dam. The linear stress distribution assumption embedded in the LEM model seems
to be on the ‘unsafe’ side. A consequence of this is that if overtopping can occur, a more detailed
model of analysis should be prepared to evaluate the dam stability.

10. Conclusion

This paper is the synthesis of the results presented by contributors to Theme C “Estimation of the
probability of failure of a gravity dam for the sliding failure mode”, of the 11" 1COLD Benchmark
Workshop on Numerical Analysis of Dams. The high number of participants has shown the growing
interest of the dam engineering community in the topic of reliability-based safety assessment.

The problem solved has been the probabilistic stability assessment of 80 m high gravity. Two
different 2D models of analysis have been considered: a Limit Equilibrium Model and an elastic
deformable body model implemented in the code FLAC. The probability of failure has been estimated
as the strength parameters of friction angle and cohesion have been considered as random variables.

More realistic results of probability of failure for lower water levels, which are the more frequent
ones, seem to be obtained with deformable body models.

Results presented by contributors open a field of discussion on the main sources of uncertainties,
which include models of analysis, factor of safety definition and statistical analysis of random
variables.

Future benchmark problems in this topic may be addressed to go deeper into any or several of these
guestions, to fill the gap between everyday engineering practice and reliability based dam safety
assessment.

More research is needed to handle uncertainties, as parameter uncertainty is just a part of the
problem, but other sources of uncertainty have become present explicitly throughout the process.
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