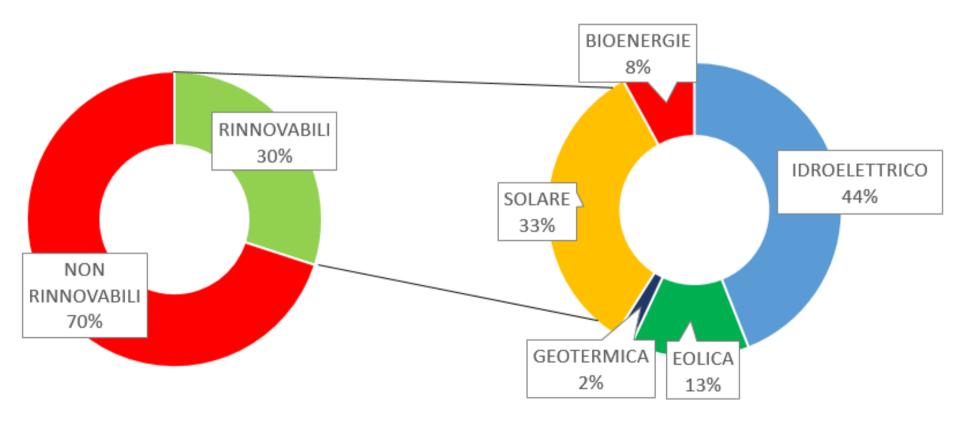


PROSPETTIVE FUTURE DELL'IDROELETTRICO IN ITALIA

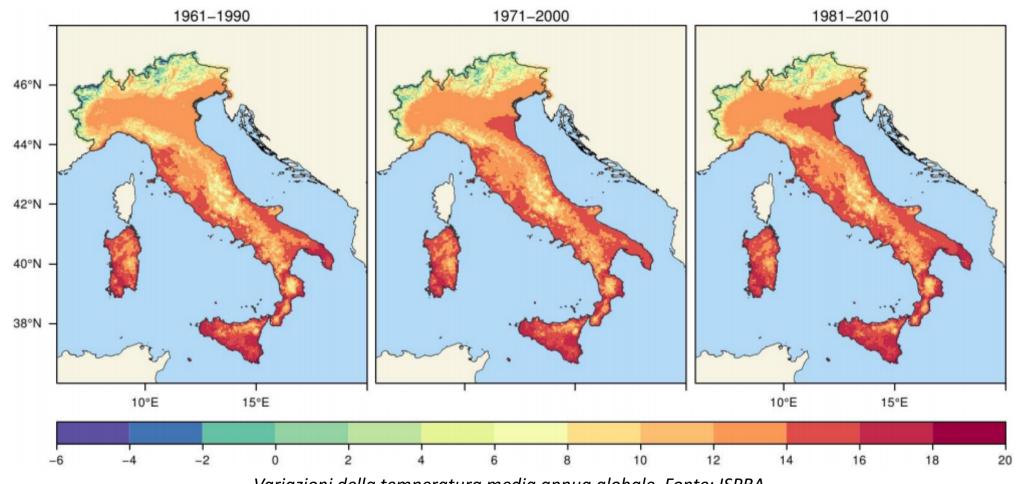

Federico Marca – federicomarca01@gmail.com Andrea Terret – andreaterret@gmail.com

Relatore: Prof. Ing. Carlo De Michele Correlatore: Ing. Francesco Avanzi

LA PRODUZIONE IDROELETTRICA IN ITALIA

- Idroelettrico: 13% della produzione nazionale di energia
- Potenza installata in Italia (2015): 22.4 GW (11° nel Mondo)
- Energia prodotta (2015): 58.5 TWh (18% della richiesta nazionale)

Produzione di energia in Italia nel 2014. Fonte: GSE


ENERGIA E CLIMA

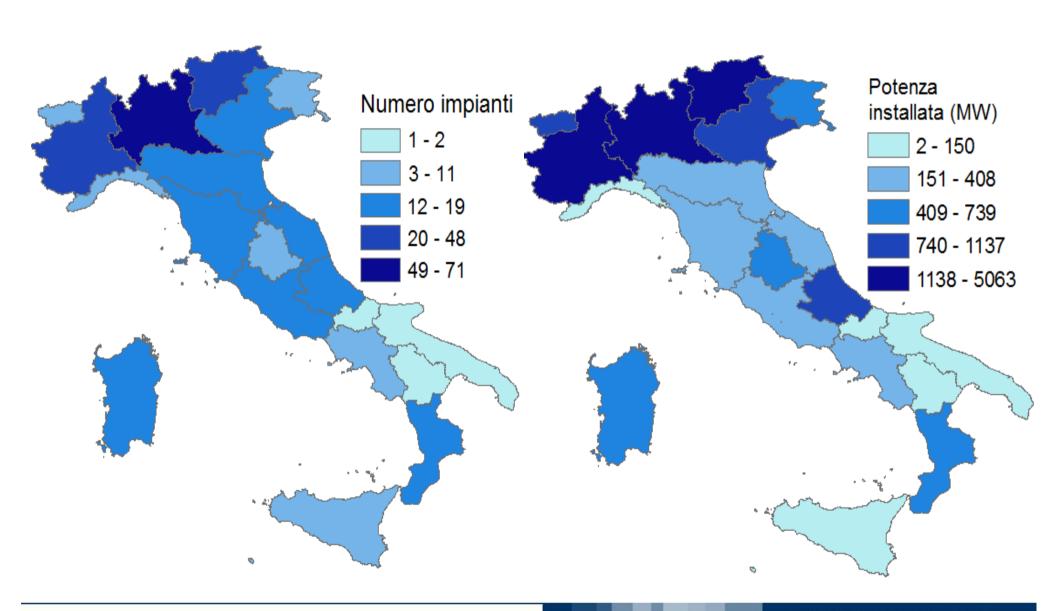
3

IL CAMBIAMENTO CLIMATICO IN ITALIA

Variazioni della temperatura media annua globale. Fonte: ISPRA

- Negli ultimi 50 anni: Aumento di +1.4°C della T media (+0.03°C/y)
 - Riduzione dell'area glaciale del -30%

OBIETTIVO E SCHEMA OPERATIVO


Valutare la produzione idroelettrica futura a scala nazionale in risposta a scenari di possibile cambiamento climatico.

METODO:

- 1. Modello idrologico applicabile in bacini non strumentati
- Determinazione dei parametri
- Validazione
- 2. Modello di impianto per influenza su idroelettrico

LO STATO DELL'ARTE

METODI - I BACINI OGGETTO DI STUDIO/2

Oggetto di studio: campione di 42 bacini glacializzati considerati rappresentativi della risposta media nazionale in condizioni analoghe

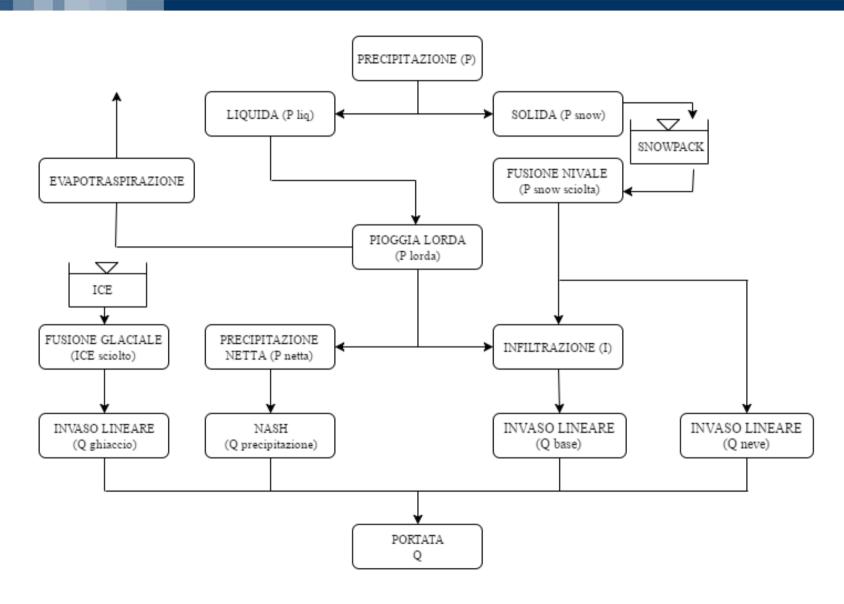
		-4	, ,		
REGIONE	NUMERO DI BACINI	QUOTA DI CHIUSURA MEDIA (m)	AREA MEDIA (km²)	GRADO DI RICOPERTURA GLACIALE MEDIA	
Piemonte	13	1767	33	7.4%	
Valle d'Aosta	5	2058	48	10.7%	
Lombardia	12	1741	32	8.6%	
Trentino	11	1513	135	7.5%	
Veneto	1	906	324	0.2%	

METODI - IL MODELLO IDROLOGICO/1

INPUT

MODELLO A/D

OUTPUT


- DEM
- Precipitazione
- Temperatura

- Semi-distribuito
- Fasce di quota
- 6 parametri
- Ungauged basins

Portata media giornaliera

METODI - IL MODELLO IDROLOGICO/2

Schema del modello idrologico applicato in bacini non strumentati

METODI - LA DINAMICA GLACIALE

Il volume del singolo apparato glaciale è stimato con una legge allometrica:

$$V = c \cdot A^{\gamma}$$
 c, γ costanti empiriche (Farinotti et al. 2009)

La dinamica del ghiacciaio è simulata con un bilancio di massa semplificato. Al generico anno k la variazione volumetrica del ghiacciaio è data da:

$$\Delta V_k = \Delta V_{SNOW,k} - \Delta V_{ICE,k}$$

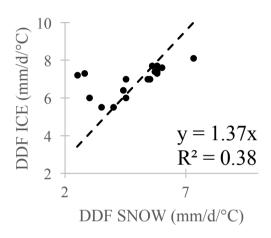
Accumulo nevoso al termine dell'anno idrologico

Perdita volumetrica dovuta alla fusione del ghiacciaio

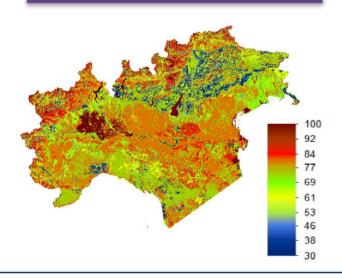
METODI - I PARAMETRI

Temperature Lapse Rate

$$T(h) = T(h_0) - TLR \cdot (h - h_0)$$


REGIONE	TLR	r²	NSE
LOMBARDIA	0.53	0.89	0.87
PIEMONTE	0.53	0.91	0.90
TRENTINO	0.50	0.91	0.90
VAL D'AOSTA	0.43	0.93	0.80
VENETO	0.34	0.79	0.74

Degree Day Factor neve


Calibrato su serie di SWE locale

$$\frac{dSWE}{dt} = P - \frac{DDF_{SNOW}}{T} \cdot (T - T_0)$$

$\beta = DDF_{ICE}/DDF_{SNOW}$

Curve Number

Comparto liquido

$$n_{LIQ} = 3.29 \left(\frac{R_B}{R_A}\right)^{0.78} R_L^{0.07}$$

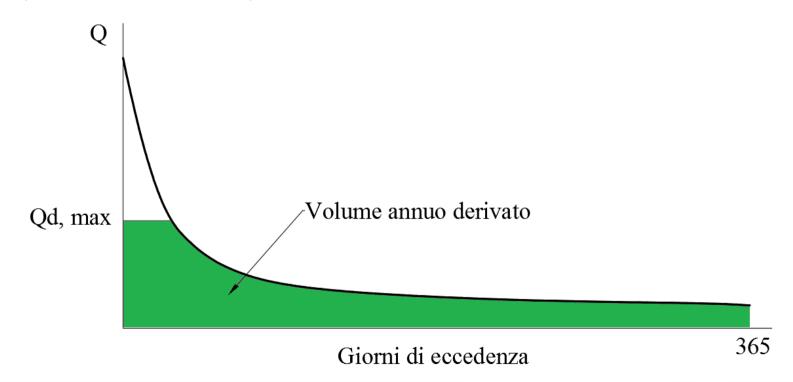
$$k_{LIQ} = 0.70 \left(\frac{R_A}{R_B R_L}\right)^{0.48} \frac{L_\Omega}{3.6 \cdot V}$$

Altri comparti

$$k_{NEVE} = 300 \cdot k_{LIQ}$$

$$k_{ICE} = 1.3 \cdot n_{LIQ} \cdot k_{LIQ}$$

$$k_{BASE} = 14 giorni$$



METODI - IL MODELLO DI PRODUZIONE

IPOTESI:

- 1. Regolazione annuale
- 2. Condizione iniziale di serbatoio pieno (1 Ottobre)
- 3. Considera l'energia producibile dall'afflusso naturale

La produttività è espressa in termini di volume annuo derivato

METODI - LA VALIDAZIONE DEL MODELLO/1

L'accuratezza del modello è stata testata in bacini in cui è disponibile una serie delle portate osservate.

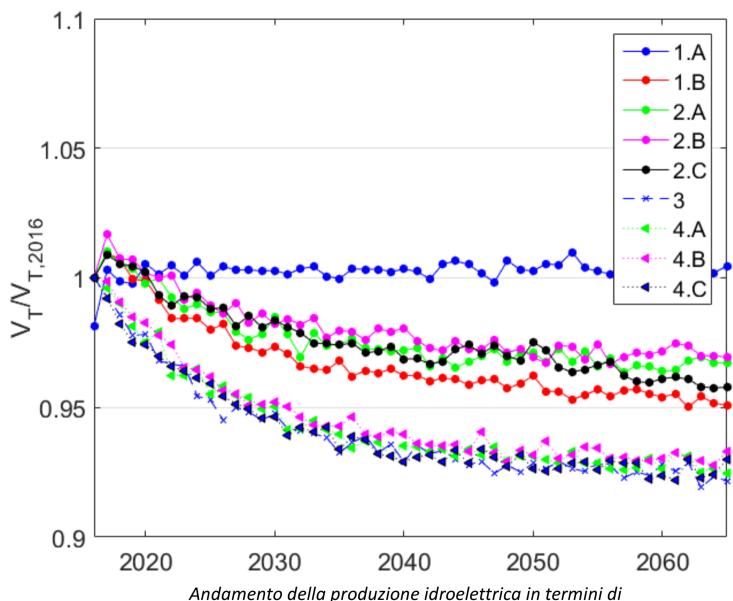
BACINO	REGIONE	DIGA	ANNI A DISPOSIZONE
1	Valle d'Aosta	✓	10
2	Valle d'Aosta	/	10
3	Valle d'Aosta	/	10
4	Valle d'Aosta	/	10
5	Valle d'Aosta	X	5
6	Piemonte	X	4

Bacino	RMSE giornaliero (m³/s)	RMSE mensile (m³/s)	NSE giornaliero	NSE mensile	Sottostima Pluviometro	Scarto volume cumulato	Scarto volume turbinato
1	3.75	2.27	0.39	0.73	-29%	17%	8%
2	0.75	0.44	-0.83	0.21	-27%	31%	16%
3	0.37	0.28	0.65	0.77	-30%	9%	10%
4	4.04	2.11	0.50	0.84	-28%	-20%	-20%
5	3.52	1.86	-1.42	0.33	-17%	-25%	-
6	2.92	0.96	-0.11	0.88	-17%	-3%	-
MEDIE	2.56	1.32	-0.14	0.63	-25%	2%	3%

METODI - LA VALIDAZIONE DEL MODELLO/2

- Buona approssimazione a scala mensile
- Il dato grezzo del pluviometro sottostima il volume affluente
- Accuratezza migliora se i parametri del modello fossero calibrati sulle serie di portata osservate

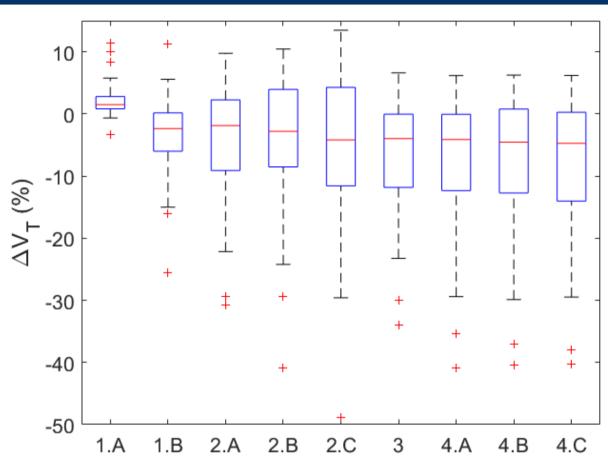
Bacino	RMSE giornaliero (m³/s)	RMSE mensile (m³/s)	NSE giornaliero	NSE mensile	Sottostima Pluviometro	Scarto volume cumulato	Scarto volume turbinato
1	3.75	2.27	0.39	0.73	-29%	17%	8%
2	0.75	0.44	-0.83	0.21	-27%	31%	16%
3	0.37	0.28	0.65	0.77	-30%	9%	10%
4	4.04	2.11	0.50	0.84	-28%	-20%	-20%
5	3.52	1.86	-1.42	0.33	-17%	-25%	-
6	2.92	0.96	-0.11	0.88	-17%	-3%	-
MEDIE	2.56	1.32	-0.14	0.63	-25%	2%	3%



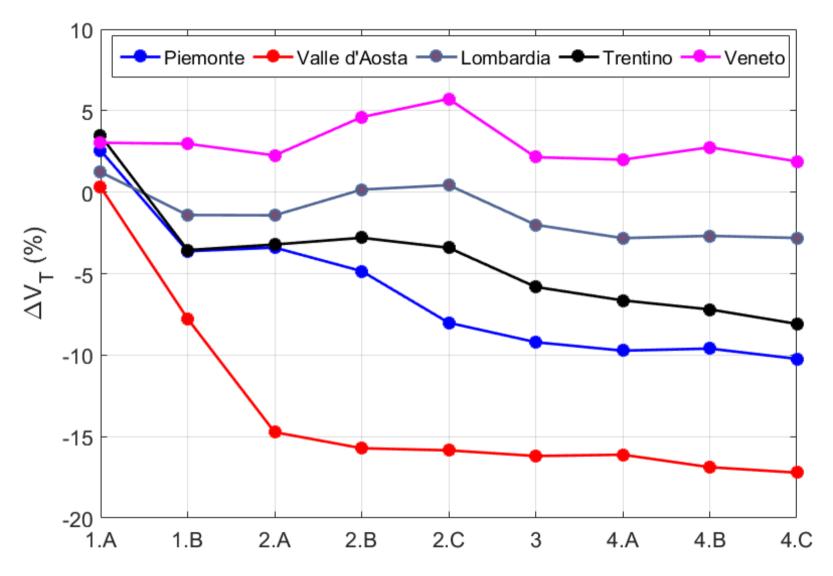
METODI - SCENARI FUTURI

- Scenari basati su ipotesi di variazione delle principali forzanti meteorologiche (temperatura e precipitazione) a scala locale
- Ogni scenario copre un arco temporale di 50 anni (1/10/2015 30/09/2065)
- Ciascuno scenario è composto da 500 diverse simulazioni dello stesso
- L'incertezza dei risultati è valutata mediante tecnica Montecarlo
- Gli intervalli di confidenza sono calcolati con livello di significatività $\alpha=5\%$

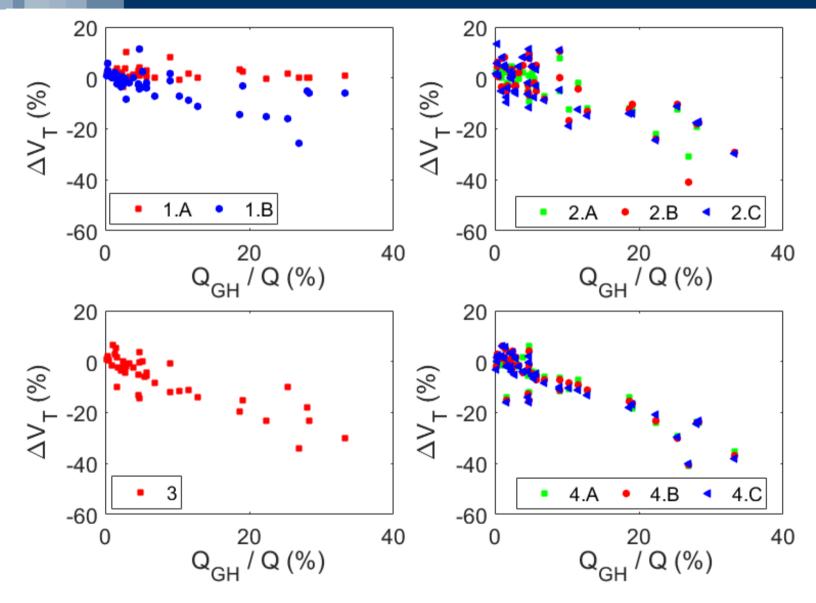
Scenario	Aggiornamento	Ir	ncremento	Precipitazioni	
	del ghiacciaio	+0.03°C/y	+0.06°C/y	+0.09°C/y	solo liquide
1.A	×	×	×	×	×
1.B	✓	×	×	×	X
2.A	✓	✓	×	×	X
2.B	✓	×	/	×	X
2.C	✓	×	×	✓	×
3	✓	×	×	×	V
4.A	✓	✓	×	×	V
4.B	✓	×	/	×	V
4.C	✓	×	×	✓	✓



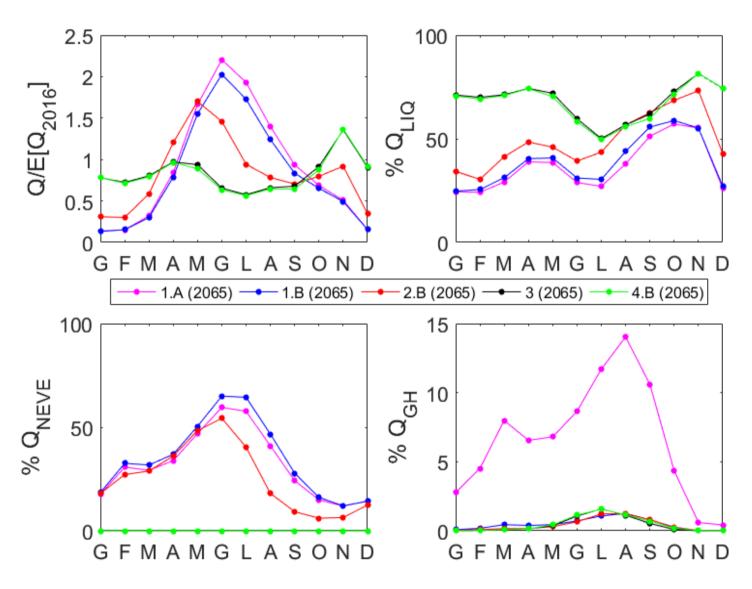
Andamento della produzione idroelettrica in termini di volume turbinato annuo



- La mediana della riduzione del volume turbinato è quindi pressoché invariata da scenario a scenario
- Notevole dispersione dei risultati


Scenario	1.A	1.B	2.A	2.B	2.C	3	4.A	4.B	4.C
Prc25	0.8%	-6.0%	-9.1%	-8.5%	-11.6%	-11.8%	-12.3%	-12.7%	-14.0%
Prc75	2.8%	0.2%	2.3%	4.0%	4.3%	0.0%	-0.1%	0.8%	0.3%
Media	2.2%	-3.3%	-4.0%	-4.0%	-5.0%	-6.8%	-7.4%	-7.6%	-8.1%
Mediana	1.5%	-2.4%	-1.9%	-2.8%	-4.2%	-4.0%	-4.1%	-4.5%	-4.7%

Variazione del volume turbinato al 2065 a scala regionale



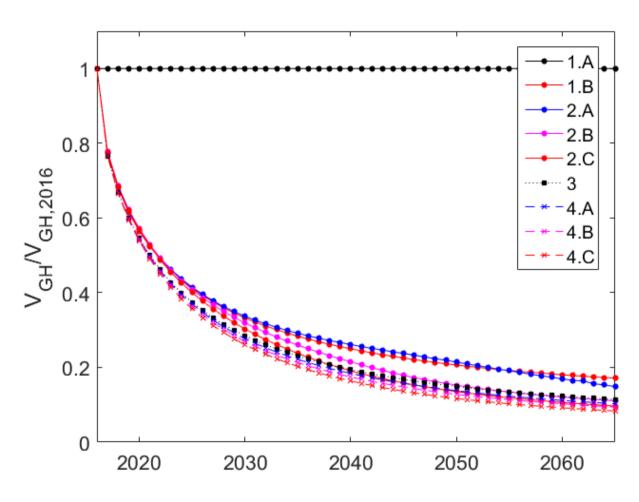
Variazione del volume turbinato annuo rispetto al 2016 in funzione del contributo glaciale medio al 2016

RISULTATI - LE PORTATE MEDIE MENSILI

Scenario 2:

- Snowdominated
- Anticipo del picco estivo

Scenario 3 e 4:


- Regime pluviale
- Assenza di stagionalità

Confronto tra deflussi totali medi mensili al 2065, contributi liquidi, nivali e glaciali

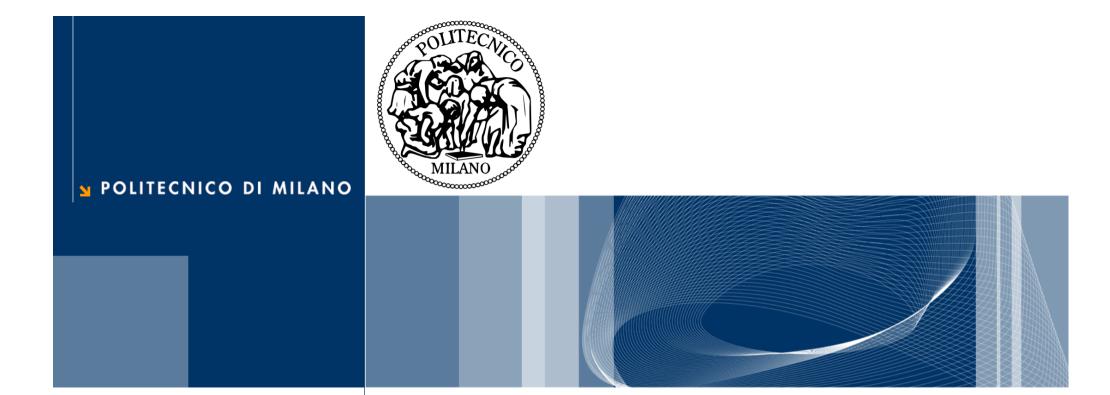
RISULTATI - L'EVOLUZIONE GLACIALE

- La regressione è pressoché indipendente dallo scenario
- Processo rapido nei primi anni di simulazione

Variazione volumetrica media in funzione dei diversi scenari

CONCLUSIONI

- La variazione di volume turbinato è pressoché indipendente dallo scenario climatico considerato attestandosi mediamente al -5%
- Bacini con maggior contributo di fusione glaciale risultano più vulnerabili al climate change
- Incremento di temperatura → regime nivale
- Assenza di precipitazioni solide → regime pluviale
- Il processo di regressione dei ghiacciai risulta indipendente dallo scenario considerato e mediamente si attesta al -95% sull'area



PECULIARITA' E INCERTEZZE DEI RISULTATI

- Si è inquadrato il problema a scala nazionale
- Il modello è stato applicato in bacini non strumentati e tutti i parametri sono assunti costanti per l'intero periodo di simulazione
- Politica di gestione dell'impianto a regolazione annuale con serbatoio pieno all'inizio dell'anno idrologico (1 Ottobre)
- Valutata l'energia derivante da afflusso naturale
- Si è trascurato il movimento del ghiacciaio → sovrastima della riduzione dello stesso accelerandone i tempi di fusione
- Non si è considerata l'evoluzione nella domanda di energia elettrica e i parametri

- Estendere l'analisi a tutti gli altri impianti nazionali, compresi quelli non glacializzati
- Considerare non solo l'energia producibile dall'afflusso naturale
- La calibrazione dei parametri descriventi la risposta idrologica del bacino su serie di portate aumenterebbe l'affidabilità del modello anche a scala giornaliera
- Implementare una gestione dinamica dei rilasci in funzione del regime idrologico e della richiesta futura di energia

Contatti

Federico Marca – federicomarca01@gmail.com Andrea Terret – andreaterret@gmail.com