

University of Cagliari Faculty of Engineering and Architecture

Geotechnical numerical model and COSMO-SkyMed/Sentinel-1 Interferometric Analysis applied to the Mosul dam, Iraq

Supervisor:

Prof. Maria Cristina Porcu (University of Cagliari)

Co-supervisor:

Prof. Fabio Maria Soccodato (University of Cagliari) Dr. Pietro Milillo (NASA Jet Propulsion Laboratory) **Candidate:** Matteo Arricca

Master's Degree Thesis in Civil Engineering - Structure

Academic Year 2017-2018

Multi Temporal-InSAR

SLC SAR images acquisition

- Same area
- Different times
- Same acquisition geometry

Basics: Persistent scatterers (PSs)

Method

- Co-registration → *Master*
- *n* acquisitions → *n*-1 SAR Interferograms

SAR Signal Components:

- Atmospheric
- Residual topographic
- Deformation

MT-InSAR Analysis on the Mosul Dam (2004-2015)

P. Milillo et al. Space geodetic monitoring of engineered structures: The ongoing destabilization of the Mosul dam, Iraq, 2016

MT-InSAR Analysis on the Mosul Dam (2015-2017)

Table 1. InSAR analysis results

Time Period	Cumulative Displacement
2004-2010	$\approx 12.5 \text{ mm/year}$
2014-2015	$\approx 15.0 \text{ mm/year}$
2015-2017	\approx 12.3 mm/year
2017-Nov 2017	\approx 9.3 mm/year

Geotechnical Numerical Model: Dam body

Table 2. Physical characteristics of the Mosul dam body

Material	Υ _d [kN/m³]	K [kPa]	G [kPa]	c [kPa]	k [m/s]	Φ[°]	n [-]
Clay (Core)	18.0	8.89 E+03	2.96 E+03	25.0	1.0 E-11	39.0	0.3
Sand (Shell)	19.5	4.67 E+04	2.80 E+04	0.0	1.0 E-07	37.0	0.1

Geotechnical Numerical Model: Stratigraphy

Kelly J, Wakeley et al. Geologic Setting of Mosul Dam and Its Engineering Implications, Final Report, U.S. Army Engineer District, Gulf Region, Baghdad, Iraq, 2007

Geotechnical Numerical Model: Stratigraphy

A first strongly approximation:

A single layer representing the karstified foundation layers

→ Limestone/GB

Failure Criterions adopted:

Hoek-Brown:

Limestone/GB foundation layer

Mohr-Coulomb:

Dam body materials, Soil-Clay and Soil Sand foundation layers

Kelly J, Wakeley et al. Geologic Setting of Mosul Dam and Its Engineering Implications, Final Report, U.S. Army Engineer District, Gulf Region, Baghdad, Iraq, 2007

Material Groups

Geotechnical Numerical Model: Stratigraphy

Uniaxial compression tests on the cylindrical samples of **gypsum** taken in the Mosul dam area

Average values of E_i and σ_{ci} : $E_i = 2316.4 MPa$ $\sigma_{ci} = 10.52 MPa$

Suhail A.A. Khattab. Stability analysis of Mosul dam under saturated and unsaturated soil conditions, PhD thesis, 2013.

Table 3. Hoek-Brown	parameters	of the ground	layers foundation
---------------------	------------	---------------	-------------------

Material	Δz [m]	Υ _d [kN/m³]	K [kPa]	G [kPa]	c [kPa]	k [m/s]	Φ[°]
Soil-Sand: well graded	28	17.0	2.78 E+04	2.08 E+04	0.0	1.0 E-07	35
Limestone/GB	134	19.7	3.86 E+05	2.32 E+05	-	1.0 E-09	-
Soil-Clay:low plasticity	55	19.7	8.33 E+07	6.25 E+07	1000	1.0 E-09	24

Geotechnical Numerical Model: Construction steps

Geotechnical Numerical Model: Reservoir Water Load

Water pressure distribution and Saturation

Comparison between σ'_{yy}

Hoek-Brown failure criterion

Compressive strength

$$\sigma_{1}^{'} = \sigma_{3}^{'} + \sigma_{ci} \left(m_{b} \frac{\sigma_{3}^{'}}{\sigma_{ci}} + s \right)^{a} \xrightarrow{\sigma_{3}^{'} = 0} \sigma_{1}^{'} = \sigma_{ci} s^{a} =$$

Material constants

$$m_{b} = m_{i} \exp\left(\frac{GSI - 100}{28 - 4D}\right)$$
$$s = \exp\left(\frac{GSI - 100}{9 - 3D}\right)$$
$$a = \frac{1}{2} + \frac{1}{6} \left[\exp\left(-\frac{GSI}{15}\right) - \exp\left(-\frac{20}{3}\right)\right]$$

- Geological Strength Index: GSI $GSI \in [0 \div 100]$
- Disturbance factor: *D*

 $D \in [0 \div 1]$

Degradation of the Gypsum foundation layers

Degradation of two Limestone/GB foundation layers:

- Different **depth** and **thickness**.
- Three different approaches.

Degradation of the Gypsum foundation layer: Method 1

Generalized Hoek and Diederichs

$$E_{rm} = E_i \left(0.02 + \frac{1 - 0.5D}{1 + \exp((60 + 15D - GSI)/11)} \right)$$

$$\sigma_c = \sigma_{ci} s^a$$

$$m = f(GSI, D) \quad s = f(GSI, D) \quad a = f(GSI)$$

$$GSI \in [80 \div 10]$$

$$D \in [0.2 \div 0.9]$$

Degradation laws of *E_i*

Degradation of the 1st foundation layer

Material Groups "Soil-Clay:low plasticity" Limestone/GB_first_layer Soil-Sand:Sand (Shell) "Soil-Clay:Clay (Core)"

Method 1 (E_i reduction of 60%) - Results

Table 4. Values of the vertical displacements [cm] for the E_i reduction of 60 %

Initial GSI (Before Degradation)

GSI	80	70	60	50	40
80	-				
70	0,25	-			
60	0,3	0,3	-		
50	0,6	0,6	0,6	-	-
40	1,5	1,5	1,5	-	-
30	4,5	4	4	-	-
20	12,5	12,5	12,5	-	-
10	30	30	30	-	-

0.00E+00

Vertical displacements [m] after the degradation of the first layer from GSI=80 to GSI=40

Method 1 (E_i reduction of 40%) - Results

Table 5. Values of the vertical displacements [cm] for the E_i reduction of 40 %

Initial GSI (Before Degradation)

GSI	80	70	60	50	40
80	-				
70	0,25	-			
60	0,3	0,3	-		
50	0,6	0,6	0,6	-	-
40	1,5	1,5	1,5	-	-
30	4,5	4	4	-	-
20	12,5	12,5	12,5	-	-
10	30	30	30	-	-

Vertical displacements [m] after the degradation of the first layer from GSI=50 to GSI=10

Degradation of the Gypsum foundation layer: Method 2

Assumption: keep constant the ratio between the strength and the elastic modulus at any degradation step.

$$E_{rm} = \sigma_c \left(\frac{E_i}{\sigma_{ci}}\right)$$
$$E_i = \cot = 2316.4 \ [MPa]$$
$$m_b, s, a = \cot$$
$$GSI = \cot = 80$$
$$D = \cot = 1$$

Degradation control parameter: σ_c

Degradation of the 1st and the 2nd layer

Material Groups

Method 2 (Degradation of the 1st layer) - Results

Table 6. Values of the vertical displacements [cm] obtained by degrading the first layer

Initial Step (Before Degradation)

Step	Step 1	Step 2	Step 3	Step 4	Step 5	Step 6
Step 1	-					
Step 2	0,225	-				
Step 3	0,25	0,225	-			
Step 4	0,25	0,25	0,25	-		
Step 5	0,25	0,25	0,25	0,25	-	
Step 6	0,3	0,3	0,3	0,3	-	-
Step 7	0,35	0,4	0,4	0,4	-	-
Step 8	0,5	0,5	0,5	0,5	-	-
Step 9	0,7	0,7	0,7	0,7	-	-
Step 10	1	1	1	1	-	-
Step 11	1,5	1,5	1,75	1,75	-	-
Step 12	2,5	2,5	2,5	2,5	-	-
Step 13	4	4	4	4,5	-	-

Vertical displacements [m] after the degradation of the first layer from Step 1 to Step 11

Method 2 (Degradation of the 2nd layer) - Results

Table 7. Values of the vertical displacements [cm] obtained by degrading the second layer

Initial Step (Before Degradation)

Step	Step 1	Step 2	Step 3	Step 4	Step 5	Step 6
Step 1	-					
Step 2	0,2	-				
Step 3	0,225	0,2	-			
Step 4	0,225	0,225	0,2	-		
Step 5	0,25	0,25	0,225	0,225	-	
Step 6	0,25	0,25	0,25	0,25	0,225	-
Step 7	0,3	0,3	0,3	0,25	0,25	-
Step 8	0,35	0,35	0,35	0,35	0,25	-
Step 9	0,4	0,4	0,4	0,4	0,3	-
Step 10	0,5	0,5	0,5	0,5	0,45	-
Step 11	0,8	0,8	0,8	0,8	0,8	-
Step 12	1,2	1,2	1,25	1,25	1	-
Step 13	2	2	2	2,25	2	-

0.00E+00

Vertical displacements [m] after the degradation of the first layer from Step 3 to Step 13

Degradation of the Gypsum foundation layer: Method 3

Assumption: keep constant the ratio between the strength and the elastic modulus at any degradation step, as in Method 2.

Degradation control parameter: GSI

$$E_{rm} = \sigma_c \left(\frac{E_i}{\sigma_{ci}}\right)$$

$$E_i = \cot = 2316.4 \ [MPa]$$

$$\sigma_c = \sigma_{ci} \ s^a$$

$$m_b = f (GSI, D) \ s = f (GSI, D) \ a = f (GSI)$$

$$GSI \in [80 \div 5]$$

$$D = \cot = 1$$

Degradation of the 1st and the 2nd layer

Material Groups

Method 3 (Degradation of the 1st layer) - Results

Table 8. Values of the vertical displacements [cm] obtained by degrading the first layer

Initial GSI (Before Degradation)

GSI	80	70	60	50
80	-			
70	0,225	-		
60	0,25	0,25	-	
50	0,25	0,3	-	-
40	0,3	0,35	-	-
30	0,4	0,5	-	-
20	0,8	0,9	-	-
15	1,25	1,25	-	-
10	2	2	-	-
г	4 5	4		

Vertical displacements [m] after the degradation of the first layer from GSI=80 to GSI=15

Method 3 (Degradation of the 2nd layer) - Results

Table 9. Values of the vertical displacements [cm] obtained by degrading the second layer

Initial GSI (Before Degradation)

GSI	80	70	60	50
80	-			
70	0,225	-		
60	0,225	0,225	-	
50	0,25	0,25	0,25	-
40	0,25	0,25	0,3	0,25
30	0,35	0,35	0,35	0,3
20	0,5	0,5	0,5	0,5
15	0,6	0,7	0,8	0,7
10	1	1	1,25	1
5	2,5	2,5	2,5	2,25

Vertical displacements [m] after the degradation of the first layer from GSI=80 to GSI=10

Geotechnical numerical model and COSMO-SkyMed/Sentinel-1 applied to the Mosul dam, Iraq

Final GSI (After Degradation)

Conclusions

- Structural health monitoring (SHM) through InSAR techniques: a useful tool, alone or as a support to the traditional techniques;
- Satellite data allow to monitor slow-evolution phenomena such as subsidence and/or settlements of structures;
- Approximations in the numerical model of the Mosul dam due to the complexity of phenomenon of gypsum-dissolution and a lack of some data;
- Modeling the phenomenon of gypsum-degradation: some approaches based on the reduction of the Hoek-Brown mechanical parameters allow to reproduce the vertical displacements of some target points on the dam consistent with the satellite time histories;
- **Further developments**: efficiency of the jet grouting curtain and degradation of gypsum as a function of water velocity during seepage.

University of Cagliari Faculty of Engineering and Architecture

Jet Propulsion Laboratory California Institute of Technology

Thank you for your attention