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INTRODUCTION

Simple strain softening material model for soil is used with the features of
non-associated flow characteristics, post-peak strain softening, and strain-
localization into a shear band. Then a kinematic hardening model considering
the cumulative deformation by cyclic loading is developed based on the soil
model of isotropic strain-hardening-softening property.

Total stress elasto-plastic constitutive model is rather simple and robust for
application to a dynamic response analysis of fill-type dams. A cumulative
damage concept for simple elasto-plastic model is effective by using the
results of cyclic tri-axial tests of saturated soils.

Dynamic progressive failure analysis of a small dry sand dam on shaking table
is carried out. The computed acceleration and displacement at the crest of
model dam is compared to the measured one. The computation of real
rockfill dam is also carried out by total stress elasto-plastic model and
effective stress constitutive model by taking into account the pore water
build-up.



YIELD & PLASTIC POTENTIAL
FUNCTION

The yield function ( f) and the plastic potential function (@) are
given by
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YIELD FUNCTION

In case of Mohr-Coulomb model, g(& )takes the following form
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& : mobilized friction angle
@ : Lode angle (third invariant of deviatoric stress)



SIMPLE STRAIN SOFTENING
CONSTITUTIVE MODEL

Frictional softening is given by next function
a.K
B+xk

a(k)=a, + a, =—(a, —ag)

Cohesion softening is given by next function.

KK
D+k

= + _
Dilatancy is reduced by next equation
“)

a(K):ap(l—C+K

K is plastic parameter, B, C, D are constants for softening function
p and R specify peak and residual



ELASTIC PROPERTIES

Shear modulus G, Bulk modulus K and damping ratio h are given by
Hardin-Drnevich equation
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yis shear strain, J; is reference shear strain, V is Poisson’s ratio, e is void

ratioand, Gg , hya are empirical constants



FRICTIONAL HARDENING-SOFTENING FUNCTIONS
IN ISOTROPIC HARDENING MODEL
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where m, & and &, are material constants



PEAK FRICTION ANGLE

The peak friction angle (¢,) Is estimated
from the empirical relations (by Tatsuoka)

@,(deg)=159.47(1.5-¢€) -10(1-¢€) Iog{( Is } 0 (O)

O3)o )

(03)o =4(1-€)p,(p, =98Pa)

€ . |Initial void ratio

5 . angle of Jldirection relative to horizontal bedding plane
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RETURN-MAPPING ALGORITHM

A change In stresses can cause an associated
change in the elastic strains even by

de® = [ C]_1 (Og —0,) [C]: Elastic matrix

As the total strain does not change during the
relaxation process, the plastic strain change Is
balanced by an equal and opposite change in the

elastic strains :

de;, =de; + def

de) = —dée=—[c] YO ~0))
F. isthe area of the element

s=F,/F, e .
F, isthe area of a single shear band in each element



RETURN-MAPPING ALGORITHM(continued)

dé'p :/](ﬁd)/ 0‘,0) The plastic strain increments

are proportional to the
gradient of the plastic
potential

Og =0, —SA[D]%( 0@/ Jo)

Suitably relaxed stress must satisfy
the yield function

f (0, Ks) = H{( T, - SADI*(@P1 30)), (K, + A)} =0

A =1 (0n k) {(FI I DK I I « &I IR}
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EXPLICIT DYNAMIC (RELAXATION) METHOD

Mpa+Cv+P-P™=F ( C=aM, ®
1 At .
= |:—|:)+|:)mIt t+2 —(1—0.5At
Cln+1 1+O5 At|:MD ( ) qn ( )qn1:| (3)

M D is the diagonalized mass matrix
P s the internal force vector

C is the damping matrix _ _
\VV is the velocity vector

a Is the acceleration vector At Is the time increment

qn is the displacement vector at time n, @ is the critical damping ratio
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EXPLICIT DYNAMIC (RELAXATION) METHOD
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IMPLICIT-EXPLICIT DYNAMIC
(RELAXATION) METHOD

qn+1 = qn +AtVn +At2(1_ Z,B)an [ 2
\7n+1 = Vn T At(l_ y)an

v, Is the velocity vector; a, is the acceleration vector at time
n, and vy, 3 are constants

K' =M/ (At°B) +yC, [ (AtS) + K (T,.)

K™ =M /(At?

( '8 ) Displacement is simultaneously solved
* from the explicit and implicit effective

K'Ag =W : .

stiffness matrix using the Skyline solver
14



IMPLICIT-EXPLICIT DYNAMIC
(RELAXATION) MRTHOD

The residual force is evaluated by the equation.
LIJ = 1:n+1 - I\/Ian+1 - p(qn+1’Vn+1)

The displacement, velocity and acceleration of the next
step are calculated by the following equations.

qn+1 - 61‘n+1 + Aq

V.., =V . =Atya

n+1 n+1

an+1 = (qn+1 - qn+1) / (At 218)
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PLANE STRAIN TEST & FINITE ELEMENT
ANALYSIS
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PLANE STRAIN TEST & FINITE ELEMENT
ANALYSIS USING 1 ELEMENT
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FINITE ELEMENT
MESH FOR FOOTING

Soils and Foundations Vol. 39,
NO.4,93-109, Aug. 1999
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RELATIONSHIP BETWEEN BEARING CAPACITY AND
WIDTH SCALE EFFECT
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BEARING CAPACITY COEFFICIENT

 FEM simulates closely the pre-peak behavior and
peak load observed

e Simulates very well the bearing capacity in both
types physical tests (1g and centrifuge condition)

e Can simulate not only the pressure level effect but
also the particle size effect (shear band effect)
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CENTRIFUGE STATIC TILTING MODEL TEST
AND FINITE ELEMENT ANALYSIS

 The pseudo-static model test under
centrifuge acceleration 50g was carried out

* The horizontal seismic force was applied by
tilting the table

 The soil for this test was a mixture of Toyoura
sand and kaolin



CENTRIFUGE TEST SIMULATER
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FINITE ELEMENT MESH FOR CENTRIFUGE
STATIC TILTING MODEL TEST
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MAXIMUM SHEAR STRAINS BY FINITE
ELEMENT ANALYSES

Kh =0.19

Interval of 5%

Kh: Seismic coefficient

These are considered to
be a kind of push-over
analysis



KINEMATIC HARDENING
CONSTITUTIVE MODEL
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Calculated stress strain relation of tri-axial test




KINEMATIC HARDENING MODEL
WITHIN BOUNDING SURFACE

[ )
a’iy(K'):[ 22|K (gf/af) } ap,

K +(£f/af)2|

a(k)=a,(k)l+e"),e=nIR
aid(k)=a-a,(e-10) e>10

aidk)=a e<10




STRENGTH REDUCTION IN TOTAL STRESS
ANALYSIS

» The advantage of the total stress analysis is that it is simple and
numerically stable. The strength reduction in total stress is due to the
plasticity or damage from a viewpoint of effective stress, cumulative
shear strain that is similar to equivalent plastic parameter can be
calculated in the elastic state.

The integral of shear strain increments can be given by next equation.
E:J'dE de = (de +de§ +de§)+2de>2<y

where des.dey,de,,dey gre deviatoric components of strain.

= By applying empirical factor to this value by using the cyclic tri-axial test
result, we can estimate the reduction of strength in total stress analysis.
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SOLUTION OF (DYNAMIC) ELASTO-PLASTIC
FINITE ELEMENT ANALYSIS

Element type
Very few element types can avoid the shear locking and dilatancy locking
e One point integration of 4 nodes iso-parametric element with hour-glass control ( 8 nodes in

three dimension element)
e 15 nodes triangular element (PLAXIS)

Nonlinear solution method to avoid the accumulation of error

Dynamic equilibrium iteration is absolutely necessary (implicit method)
Return mapping method by explicit method is effective

Strain softening with shear banding
Objectivity of analysis (mesh independancy) : incorporating a characteristics length of shear band in
the material modeling based on physical experimental observations

Simple check
Static footing limit load analysis and pseudo-static slope analysis are good benchmarks regarding above
remarks
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OUTLINE

3 SHAKING TABLE TESTS OF EMBANKMENT DAMS AND
DYNAMIC ANALYSES

3.1 Outline of a model dam experiment

3.2 Dynamic analysis of embankment dam by simple
constitutive model
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EMBANKMENT DAM MODEL AND
LOCATION OF ACCELEROMETERS

Embankment dam model and the location of accelerometers

il [ Ty
1111 [T1T

Finite element mesh used for the analysis



OBSERVED ACCELERATION AT THE
BASE AND CREST OF DAM MODEL
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COMPUTED ACCELERATION AND
SETTLEMENT (1)

Shear modulus and damping ratio are estimated by applying the equivalent linear method
dry density =0.0014kg/cm?3, ¢b = 35°, @R =34, Gg =1200.0, Pmax= 0.25.
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COMPUTED ACCELERATION (2)

ELASTIC LIMIT: reference shear strain for
Hardin-Drnevich equation

EQL Fezalt 2 4 isldym=4 eli~t=efzt=in=U013

038

06

04

02

=

=
-]

X acceleration{g

=
.

|
=
=)

|
=]
oo

05 i 15 2 25
Time(sec)

Computed acceleration at the center of dam crest.
Rayleigh damping beta = 0, elastic limit=0.0003

=
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COMPUTED SETTLEMENT(2)

NONLINEAR ELASTIC LIMIT: reference shear strain for

— (=% "] =

I
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Hardin-Drnevich equation
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25
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Computed settlement at the center of dam crest.
Rayleigh damping beta = 0, elastic limit=0.0003
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THREE DIMENSIONAL FINITE ELEMENT ANALYSIS OF
MODEL DAM ON SHAKING TABLE TEST

Three dimensional finite element mesh

Peak maximum shear strain 29%

Computed maximum shear strain of model dam
after shaking (peak strain 30%) 36
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CROSS SECTION OF ARATOZAWA DAM
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RCORDED ACCELERATION AT THE
BASE OF ARATOZAWA DAM
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RCORDED ACCELERATION AT THE
CREST OF ARATOZAWA DAM
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ARATOZAWA DAM
FINITE ELEMENT MODEL
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COMPUTED HORIZONTAL ACCELERATION AND
SETTLEMENT AT CREST OF ARATOZAWA DAM
TWO DIMENSIONAL ANALYSIS

Aratozawa M91 HD Crest Settlement, ieldyn=4
Aratozawa M91 HD Crest Acceleration, ieldyn=4
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Simple strain softening constitutive model ( peak strength, residual strength,
shear band thickness & softening rate are needed)

Elastic limitfor shear modulus and damping ratio : reference shear strain for .
Hardin-Drnevich equation



COMPUTED HORIZONTAL ACCELERATION AND
SETTLEMENT AT CREST OF ARATOZAWA DAM
TWO DIMENSIONAL ANALYSIS
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Kinematic hardening constitutive model

Effective stress analysis: Core zone is undrained, Rock zones are drained
Elastic shear modulus and damping ratio : reference shear strain for Hardin-
Drnevich equation 13



COMPUTED ARATOZAWA DAM MAXIMUM
SHEAR STRAIN DISTRIBUTION (%)
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OOGAKI DAM DYNAMIC ANALYSIS
BY SIMPLE ELASTO-PLASTIC MODEL
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Estimated input acceleration
at the base of the dam
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COMPUTED RESULTS BY SIMPLE
CONSTITUTIVE MODEL
TRANSITION ZONE IS DRAINED

Core zone is undrained and another zones are completely drained
Transition zone material properties:

gap =42.1°, #=34.0,B=0.7,C=0.6, D= 0.7, cohesion = 76 kPa, shear band
thickness=4 cm, Gg=1200.0, Rayleigh damping alpha =0, elasticlimit =
0.0003.
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M-acceleration (g
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¥
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e . o
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Computed crest acceleration Computed crest settlement
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COMPUTED RESULTS BY SIMPLE
CONSTITUTIVE MODEL
TRANSITION ZONE IS UNDRAINED

Core zone is undrained and another zones are completely drained

Transition zone material properties:

(ﬁp =36.6", (#=20.0°,B=10.7,C=0.6, D=0.7, cohesion = 353 kPa, shear band
thickness=4 cm, Gg =1200.0, Rayleigh damping alpha =0, elastic limit =

EQL7 Oogaki Dam M9 Result_5 X-acceleration EQL7 Oogaki Dam M9 Result_5 Y-displacement
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DYNAMIC RESPONSE ANALYSIS BY
KINEMATIC HARDENING ELASTO-PLASTIC
MODEL (TOTAL STRESS ANALYSIS)

c=374kPa, $=36.6" , @ =20.0° , €¢=0.03, €r =0.6, & =5.0,
m=1,1=0.5, n=1.0, Thickness of shear zone = 4 cm. The factor of plastic

parameteris 3000.0.
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Computed crest settlement by total stress analysis

Computed crest acceleration by total stress analysis 48



DYNAMIC RESPONSE ANALYSIS BY
KINEMATIC HARDENING ELASTO-PLASTIC
MODEL (EFFECTIVE STRESS ANALYSIS)

c=11kPa, ¢, =42.0° , @ =34.0° ,&+ =0.03, € =0.6, @t =5.0,
m = 0.5, n = 1.0, Thickness of shear zone = 4 cm.

OogakiDam Effective Stress M51 Result X-acceleration Oogaki Dam Effective Stress M51 Result Y-disp
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COMPUTED MAXIMUM SHEAR STRAIN (%)
BY KINEMATIC HARDENING MODEL
EFFECTIVE STRESS ANALYSIS
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SUMMARY

A dynamic progressive failure analysis of a small embankment dam using dry
sand on shaking table is carried out. The acceleration simulating El Centro
earthquakeis applied to the base of shaking table. The computed acceleration at
the crest of model dam is compared to the observed one and the computed
displacementis also verified by the observed displacement.

A shear banding constitutive model incorporating a characteristics length of shear
band is necessary. Both a simple strain softening constitutive model and a
kinematic hardening model are also applicable to total stress dynamic response
analyses by applying incompressible condition in case of saturated soils.

The computation of real fill-type dam is also carried out by total stress elasto-
plastic constitutive model and effective stress constitutive model by taking into
account the pore water build-up.

These computations are carried out by computer code NONSOLAN: Nonlinear Solid and Soil

Analysis
51
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DERIVATION OF STRESS-STRAIN RELATION

Total strain increment

Multiply D€

de = dg® + siAdg”
oL )

de = D%'de + SA —
0o

D°de = do + sAD®b

where ( b = 02 j
do

do = D"de —sAD®b

S = Fb / Fe . s the area of the element

is the area of a single shear band
b in each element >



PARAMETER (A)

Stress and strain must satisfy the

d8:dse+@

de = D*do + 51 O

0o
a'D®

a' D°de =a' do.+ sAa' D°b
= (A +sa' Deb)A N\
a' Dds
A +sa' Db

Multiply both sides

A_

yield condition

f(o,k)=0

df =0 (consistency condition)

id(s +idK =0
Jo oK

a'de-AA1=0




STRESS-STRAIN RELATION

do = D°de - sAD®b Substituting A (/] —

We can obtain the next stress-strain relation
sDba’ Déds
T e dS
A+sa Db

dG:[De—

(aT :ﬂ , b:aﬁ ,A:_lade)
Jo Jo A Ok

a' D®de

A +sa' Db

|
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COMPUTED HO
SETTLEMENT

RIZONTAL ACCELERATION AND
" AT CREST OF MODEL DAM

THREED

MENSIONAL ANALYSIS
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Computed horizontal acceleration at the Computed settlement at the crest of

crest of model dam

model dam
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TWO DIMENSIONAL FINITE ELEMENT ANALYSIS
OF MODEL DAM ON SHAKING TABLE TEST

Two dimensional finite element mesh
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Computed maximum shear strain of model dam
after shaking (peak strain 30%)
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COMPUTED HORIZONTAL ACCELERATION AND
SETTKEMENT AT CREST OF MODEL DAM
TWO DIMENSIONAL ANALYSIS

ration(g)

Shaking Table Dam Analysis 2D X-acceleration Shaking Table Dam Analysis 2D Settlement
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Computed horizontal acceleration at the model dam

crest of model dam
58



CONSOLIDATED UNDRAINED STRESS-STRAIN RELATION
OOGAKI DAM ROCK MATERIAL (TRANSITION ZONE)
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Confining pressure: 200,400,600( kN/m2) monotonic loading



CONSOLIDATED UNDRAINED STRESS-STRAIN RELATION
OOGAKI DAM ROCK MATERIAL (TRANSITION ZONE)
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Confining pressure: 200,400,600( kN/m2) Cyclic and monotonic loading
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COMPUTED STRESS-STRAIN RELATION

BY SIMPLE CONSTITUTIVE MODEL
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Confining pressure is 200 (kN/m2) (applied cyclic load: 0 - 200kN/m?2 ) ¢ 36.6°, qﬂr =35.0°,
B=0.7,C=0.6,D=0.7, cohesion = 354 kPaq,

b)

a) without factor of equivalent plastic parameter , b) factor is 0.1
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COMPUTED STRESS-STRAIN RELATION BY
KINEMATIC HARDENING ELASTO-PLASTIC MODEL
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a) b)

@, = 36.6° , @ =20.0°, €;=0.083, € =06, af =5.0,0 m=1,1=0.5,n=1.0,
c = 374 kPa , factor for plastic parameter ¥ :a) = 1.0, b) = 3000.0
In case b) stress-strain behavior is just similar to simple elasto-plastic strain softening model
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