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Introduction

• The primary focus of this paper is to examine some basic problems in 
seismic wave propagation that can arise when using reduced-domain 
models of a semi-infinite medium. 

• We explore the use of two finite element codes, DIANA FEA and LS-
DYNA to model seismic wave propagations in an elastic medium and 
we evaluate their accuracy where the answer is known a priori. 

• This presentation is based on the results for two benchmark study 
Cases B and C using the impulsive excitation signal. 
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Semi-Infinite Medium vs. Reduced-Domain Model 

• The reduced-domain model must adequately represent elastic wave propagation in a semi-infinite half-space.

• Boundary conditions are needed for the reduced-domain model to keep the motions at the side boundaries 
equivalent to what they would be in the semi-infinite medium, and to prevent internal reflections. 
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Evaluation conducted using 4 models:
(i) DIANA with non-reflecting boundary condition; 

(ii) LS-DYNA with “Boundary-Non-Reflecting” 
conditions and an augmented input record re-
sampled at 1/100th of the interval of the normal 
input record (time step 0.00001 s); 

(iii)DIANA with a preliminary implementation of the 
free-field boundary condition; and 

(iv)LS-DYNA with “Boundary-Non-Reflecting” 
conditions and a normal input record (time step = 
0.001 s). 



Impulsive Excitation
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High and low frequency pulse

Misfit measure of computed vs. theoretical waveforms

Scale-dependent measure over the window             is 1 2,t t
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Scale-independent normalized measure is

where      and      are the means of the computed and 
theoretical time histories and      and      are their 
variances
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Case B - Foundation Block – High Frequency Pulse
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nmse – velocity 

a c e g

(i) 0.066 0.098 0.575 0.927

(ii) 0.060 0.089 0.567 0.928

(iii) 0.041 0.041 0.055 0.047

(iv) 0.063 0.090 0.571 0.929

nmse – spectra

a c e g

(i) 0.053 0.184 0.947 0.994

(ii) 0.052 0.187 0.944 0.994

(iii) 0.037 0.037 0.123 0.044

(iv) 0.072 0.190 0.944 0.994

Results at the foundation surface: a, c, e, g



Case B - Foundation Block – Low Frequency Pulse
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nmse – velocity 

a c e g

(i) 0.210 0.354 0.581 0.638

(ii) 0.206 0.362 0.586 0.642

(iii) 0.008 0.008 0.008 0.009

(iv) 0.023 0.367 0.589 0.644

nmse – spectra

a c e g

(i) 0.430 0.816 0.924 0.939

(ii) 0.413 0.820 0.926 0.940

(iii) 0.022 0.022 0.022 0.024

(iv) 0.400 0.822 0.926 0.940

Results at the foundation surface: a, c, e, g



Case B - Foundation Block – High Frequency Pulse

Results at the foundation base: b, d, f, h
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nmse – velocity 

b d f h

(i) 0.093 0.116 0.437 0.594

(ii) 0.071 0.111 0.418 0.603

(iii) 0.075 0.075 0.072 0.105

(iv) 0.073 0.112 0.421 0.605

nmse – spectra

b d f h

(i) 0.043 0.151 0.611 0.823

(ii) 0.079 0.154 0.628 0.830

(iii) 0.027 0.026 0.124 0.038

(iv) 0.079 0.154 0.628 0.830



Case B - Foundation Block – Taft Earthquake
Results at the foundation top surface: Point a
• Very good agreement between theoretical solution & free-field BC results
• 30% lower peak velocities if only the non-reflecting BC is used
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Case B - Foundation Block – Taft Earthquake
Results at the foundation top surface: Point c
• Very good agreement between theoretical solution & free-field BC results
• 40% lower peak velocities if only the non-reflecting BC is used
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Foundation / Dam Model (Case C) Study
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Illustration of a seismic wave propagation in a dam-foundation system: 

• Uniform upgoing wave in the foundation

• Dam presence interrupts continuity of the wave

• A part of the wave reflects from the upper face of the foundation and 
a part of the wave propagates into the dam structure until it is 
reflected from the dam crest

• The disturbed wave starts to propagate down back to the foundation



Comparison of Case B and Case C

Observations:

• Velocity amplitude reduced at the dam base

• Dam presence disturbs the uniform wave form 

• Foundation block model used  in deconvolution vs. 

foundation-dam model used in the time analysis
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Conclusions

• We showed that significant errors can arise due to the absence of the free-field boundary condition in FE 
simulations of wave propagation in an elastic media.

• The most efficient solution for end users would be if the commercial code writers implement such boundary 
conditions in their products. 

• Because of the significant error introduced by neglecting this free-field boundary conditions, this should be a 
high priority investigations for the engineering community .

• Using a foundation block model in a deconvolution process of the earthquake loads and applying the obtained 
deconvoluted acceleration record to a foundation-dam model may result in significant analysis errors.
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