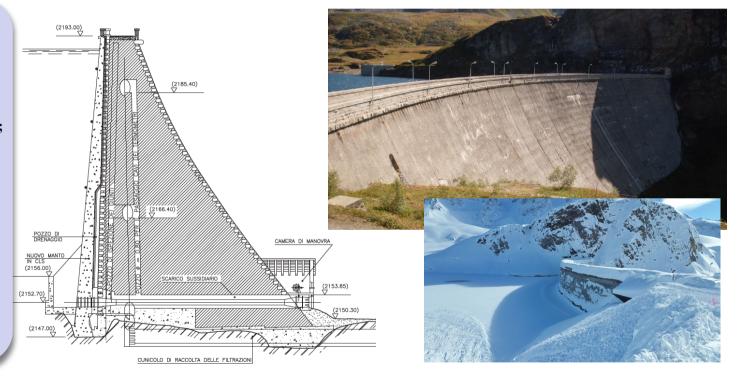

POZZO A VORTICE DELLA GALLERIA DI SCARICO DIGA DEL TOGGIA Modello Fisico

Dati caratteristici diga di Valtoggia

Anno ultimazione lavori: 1932

Tipologia Diga (ai sensi D.M. 2014):

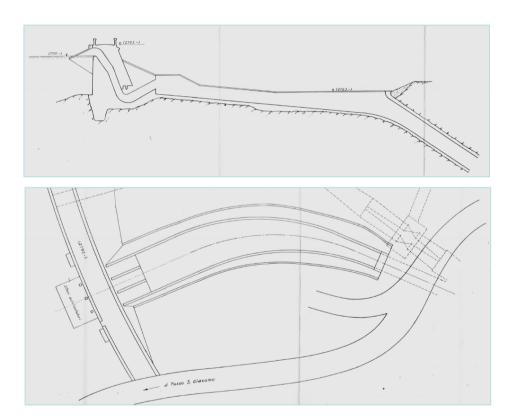

a.1.1 in pietrame e malta;a gravità; ordinaria

Altezza Diga

(ai sensi L.584/94):

43,60 m

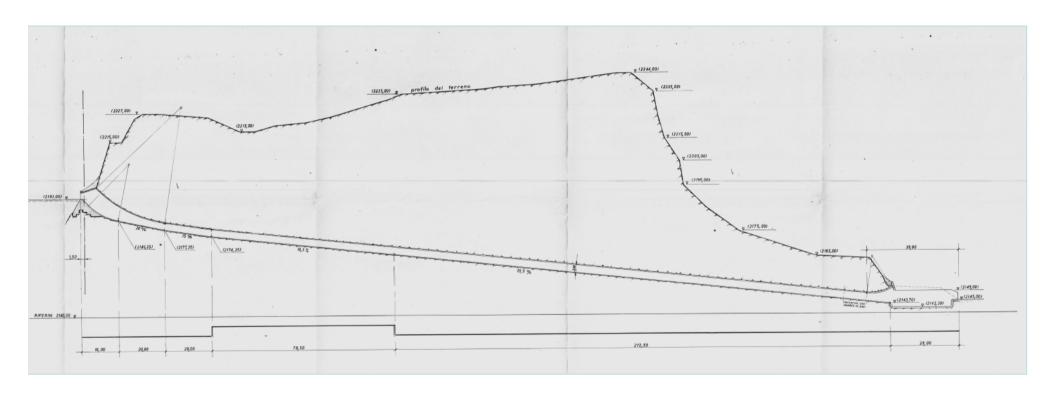
Volume di invaso (ai sensi L.584/94): 15,49 Mm³


courtesy F. Plebani

Vecchio scarico di superficie con 3 sifoni autolivellatori (1932)

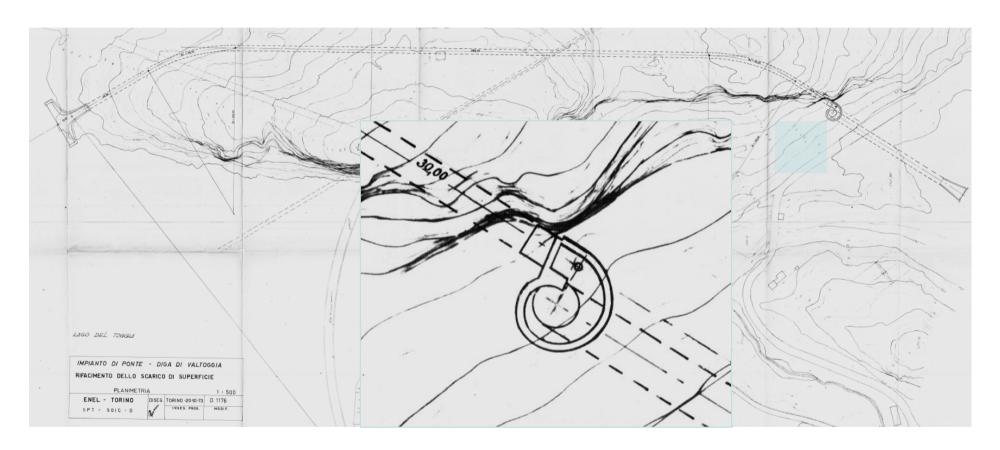


Progetto del marzo 1973 di realizzazione del nuovo scarico di superficie in sinistra orografica



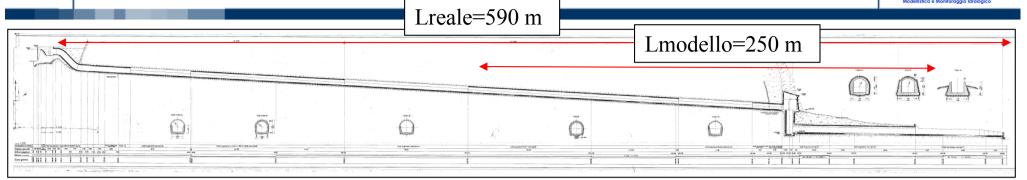
courtesy F. Plebani

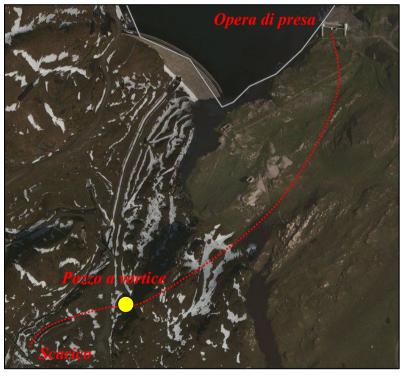
Progetto del marzo 1973 di realizzazione del nuovo scarico di superficie in sinistra orografica



Progetto approvato con nota della IV sezione del Consiglio Superiore LL.PP. n. 534 in data 5 marzo 1974

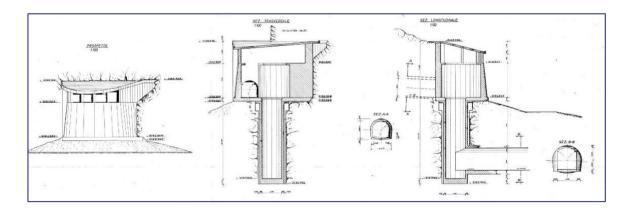
Ulteriore progetto dell'ottobre 1973 di realizzazione del nuovo scarico di superficie in sinistra orografica con pozzo dissipatore




courtesy F. Plebani

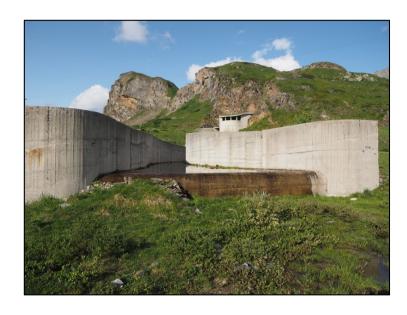
L'OPERA DI SCARICO DELLA DIGA DEL TOGGIA

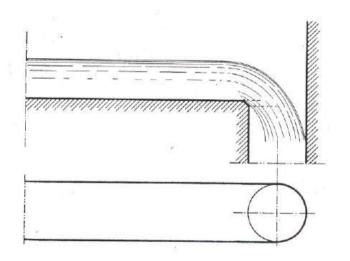
quota soglia di sfioro (m slm)	2191.00
quota massimo invaso (m slm)	2192.00
quota conornamento (m slm)	2193.00
L soglia (m)	28.0
L galleria monte (m)	492.0
H galleria monte (m)	3.60
B galleria monte (m)	3.60
H camera di alimentazione (m)	6.50
H pozzo verticale (m)	16.2
D pozzo verticale (m)	4.00
L galleria valle (m)	81.0
H galleria valle (m)	4.30
B galleria valle (m)	4.00
L canale valle (m)	57.0
H canale valle (m)	3.50
B canale valle (m)	4.00


scarico di superficie - diga Valtoggia

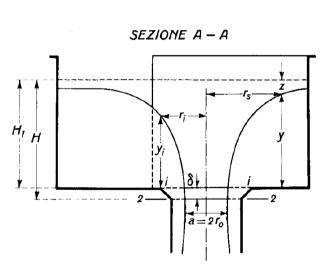
Situazione attuale

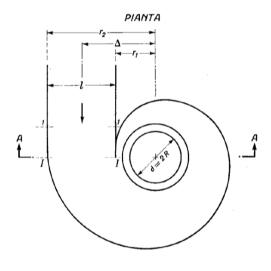
courtesy F. Plebani


L'OPERA DI SCARICO DELLA DIGA DEL TOGGIA



TIPOLOGIE DI POZZO A VORTICE




Il pozzo a vortice è un dispositivo che permette di immettere una corrente sub orizzontale in un condotto verticale. Ciò si ottiene con una camera di alimentazione, opportunamente sagomata, che permette di imprimere alla corrente in arrivo un moto di rotazione intorno alla luce di scarico. Il liquido quindi tende ad aderire alle pareti del pozzo lasciando al centro un foro attraverso cui passa l'aria. Si riducono i problemi di cavitazione, e pulsazioni delle cadute libere .

Pozzo a Caduta Libera

Pozzo a Vortice

Le misure sperimentali anni 50 e 60 permettono di verificare le ipotesi:

H₁= cost nella camera di alimentazione P= P atm nella sezione di efflusso del pozzo

$$Q = C_{\lambda} \frac{\pi}{4} D^2 \sqrt{2g(H_0 + \Delta)}$$

TIPOLOGIE DI POZZO A VORTICE

OTTOBRE 1947

L'ENERGIA ELETTRICA

447

610

L'ENERGIA ELETTRICA

OTTOBRE 1950

1947

DOTT. ING. CARLO DRIOLI della Società Meridionale di Elettricità

Su un particolare tipo di imbocco per pozzi di scarico (scaricatore idraulico a vortice)

1950

DOTT. ING. MICHELE VIPARELLI

Su un particolare tipo d'imbocco e sull'efflusso con vortice

1970

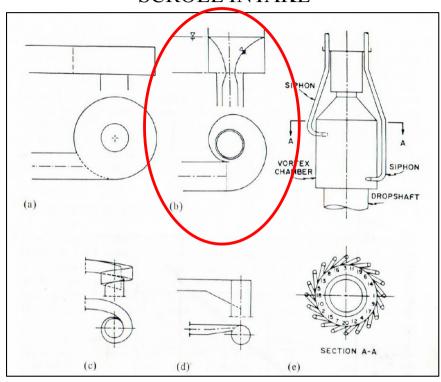
Estratto dal fascicolo n. 4, Volume XLVII, 1970 della Rivista mensile L'Energia Elettrica.

Marco Pica (*)

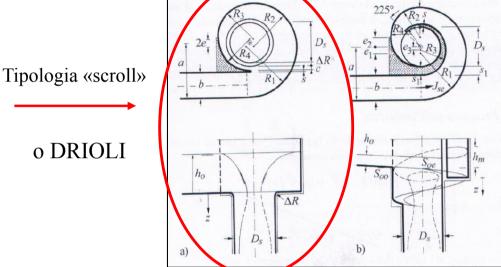
Scaricatori a vortice

2007

Design of a Scroll Vortex Inlet for Supercritical Approach Flow


Giuseppe Del Giudice, M.ASCE¹; Corrado Gisonni, F.ASCE²; and Giacomo Rasulo³

TIPOLOGIE DI POZZO A VORTICE


SCROLL INTAKE

- Jain S. C., Ettema R. (1987). "Vortex-flow intakes." Swirling flow problems at intakes, IAHR hydraulic structures design manual, J. Knauss, ed., Balkema, Rotterdam, The Netherlands, 125-137.
- Knauss J. (1987). Swirling Flow Problems at Intakes. Hydraulic Structures Design Manual, 1AA, Balkema, Rotterdam.
- Pica M. (1970). "Scaricatori a vortice", L'Energia Elettrica, 47(4).
- Viparelli, M. (1950). Su un particolare tipo di imbocco e sull'efflusso con vortice. L'Energia Elettrica, 27(10), 610-624.
- Yu D. and Lee J.H.W. (2009). Hydraulics of tangential vortex intake for urban drainage. Journal of Hydraulic Engineering, 135(3): 164-174.
- Hager W.H. (1999). Wastewater Hydraulics Theory and Practice. Spinger-Verlag. Berlin.

Configurazione per per corrente lenta corrente veloce

Configurazione

Il Prof Carlo Drioli propone una camera con pareti il cui andamento planimetrico si svolge con una linea composta di archi di cerchio di raggio decrescenti

- Del Giudice G., Gisonni C., Rasulo G. (2009). Vortex Drop Shaft for Supercritical Flow. Advances in Water Resources and Hydraulic Engineering. Springer, Berlin, Heidelberg.
- Del Giudice G., Gisonni C., Rasulo G. (2010). Design of a scroll vortex inlet for supercritical approach flow. Journal of Hydraulic Engineering, 136(10), 837–841.
- Drioli C. (1947). Su un particolare tipo di imbocco per pozzi di scarico (scaricatore idraulico a vortice). L'Energia Elettrica, 24(10), 447-452.
- Drioli C. (1969). Esperienze su installazioni con pozzo di scarico a vortice. L'Energia Elettrica, 46 (6), 399-409, 1-18.
- Hager W.H. (1990). Vortex drop inlet for supercritical approaching flow. Journal of Hydraulic Engineering, 116(8), 1048-1054.

Scala geometrica 1:15.5 Similitudine di Froude

$$\lambda = \frac{1}{15.5}$$

. –	13.3		
Grandezze	Rapporto	λ (modello)	1/λ (reale)
altezza	$\lambda_h = \frac{1}{15.5}$	0.065	15.5
lunghezza	$\lambda_l = \lambda_h$	0.065	15.5
area	$\lambda_A = \lambda_h \lambda_l$	0.00416	240.25
portata	$\lambda_Q = \lambda_h^{5/2}$	0.00106	945.87
velocità	$\lambda_V = \frac{\lambda_Q}{\lambda_A}$	0.254	3.94
scabrezza	$\lambda_{Ks} = \frac{\lambda_V}{\lambda_h^{2/3}}$	1.579	0.63
pressione	$\lambda_p = \lambda_h$	0.065	15.5
massa	$\lambda_m = \lambda_A \lambda_p$	0.000269	3723.88
tempo	$\lambda_t = \frac{\lambda_h}{\lambda_\lambda}$	0.254	3.94
accelerazione	$\lambda_a = \frac{\lambda_h}{\lambda_t^2}$	1.00	1.00
forza	$\lambda_F = \lambda_m \lambda_a$	0.000269	3723.88

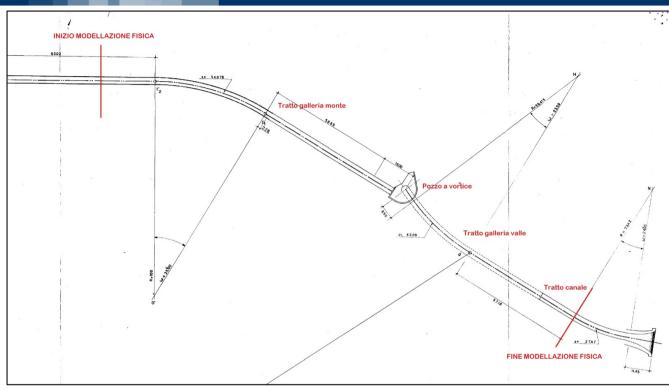
Scabrezze

$$K_{S_R} = 65 \frac{m^{\frac{1}{3}}}{S} \longrightarrow K_{S_M} = 103 \frac{m^{\frac{1}{3}}}{S}$$

Plexiglass (PMMA)
$$\longrightarrow K_S = 120 \frac{m^{\frac{1}{3}}}{S}$$

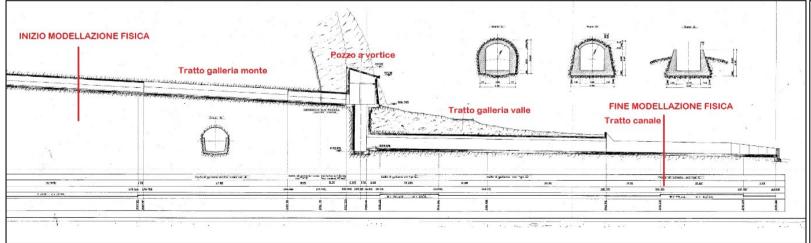
Stessa dissipazione energetica tra modello fisico e opera in reale:

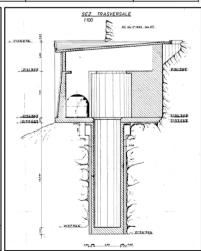
$$i = J$$
 $r_{i_f} = \frac{i_M}{i_R}$ $r_J = \frac{J_M}{J_R}$


Legge di resistenza: Similitudine di Froude:

$$J = \frac{V^2}{K_S^2 \cdot R^{\frac{4}{3}}} \qquad r_V = \sqrt{\lambda} \qquad \longrightarrow \qquad r_{i_f} = \frac{1}{r_{K_S}^2 \cdot \lambda^{\frac{1}{3}}} = 0.732$$

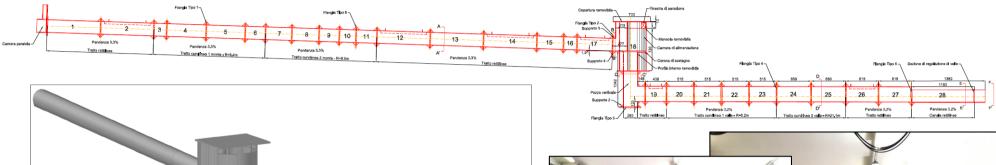
	reale	modello
i galleria monte (%)	4.5	3.3
i galleria valle (%)	0.3	0.2

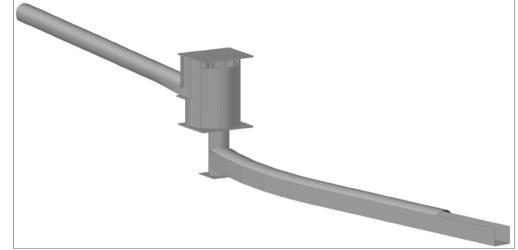

Dimensioni modello fisico:

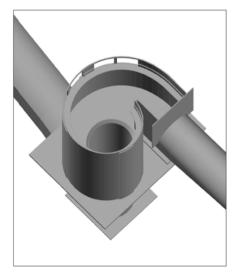

L=17.6 m

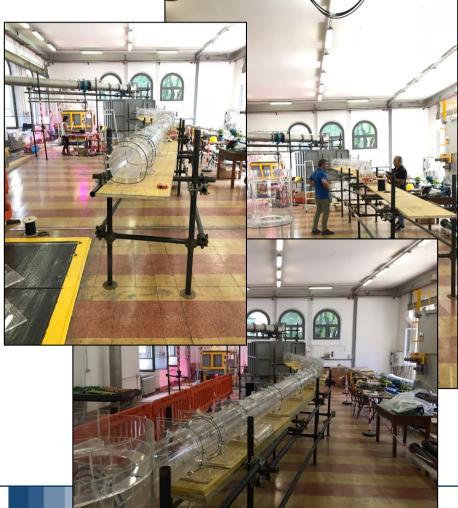
B=3.0 m

H=1.7 m

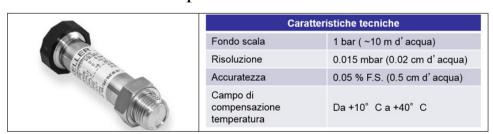

Grandezza	Modello fisico [cm]	Reale [m]
L galleria monte	1070	166
H galleria monte	23.2	3.6
B galleria monte	23.2	3.6
L tratto in transizione	66.7	9.5
H camera alimentazione	42	6.5
D pozzo verticale	26	4.0
H pozzo verticale	94.2	14.6
H fondo pozzo	10	1.5
H tot pozzo verticale	104.2	16.2
L galleria valle	513	80
H galleria valle	28	4.3
B galleria valle	26	4.0
K _s [m ^{1/3} s ⁻¹]	120	65
i galleria monte [%]	3.3	4.5
i galleria valle [%]	0.2	0.3







PROGETTO e REALIZZAZIONE DEL MODELLO FISICO

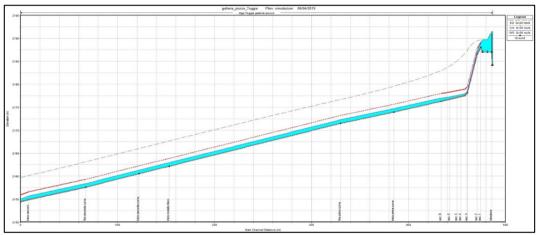


Sistema di Misura

Misura di portata con misuratore magnetico su DN300

Misure di pressione con trasduttori

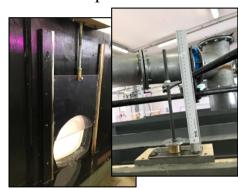
Misure di livello con aste graduate



Condizioni al Contorno

MONTE

Modellazione monodimensionale in moto permanente (HEC-RAS)


corrente veloce

VALLE

Efflusso libero in seguito alle prime osservazioni di funzionamento su modello fisico (corrente veloce)

Regolazione con funzionamento a battente sotto paratoia

Sezione di controllo

VERIFICHE E PROVE SU MODELLO FISICO

POZZO A VORTICE

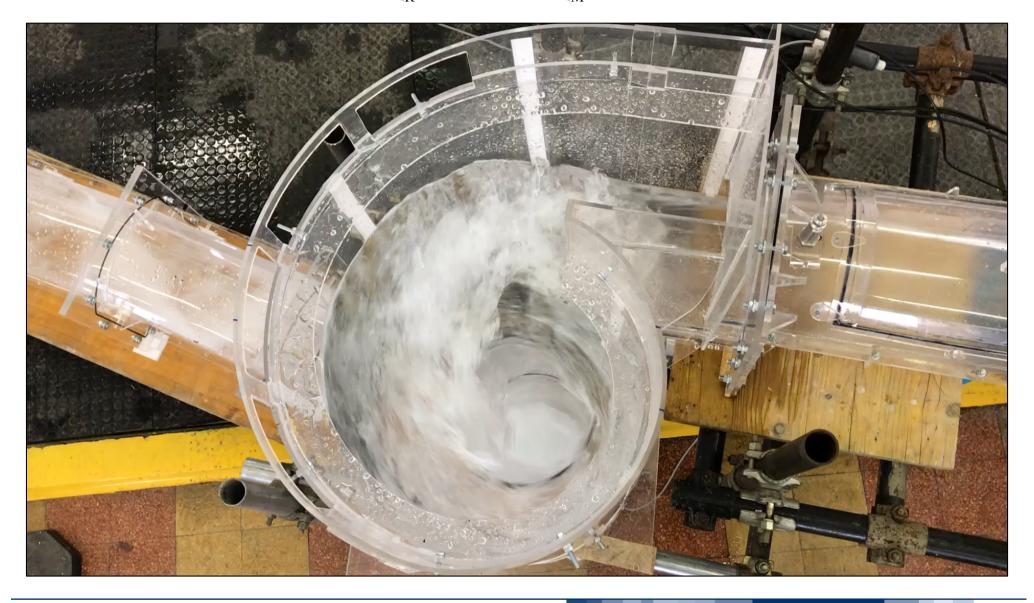
- 1. Portate smaltibili dal sistema pozzo-galleria
- 2. Livelli massimi
- 3. Nucleo d'aria (diametro di aerazione del pozzo verticale)
- 4. Coefficiente di efflusso
- 5. Aerazione della corrente
- 6. Efficienza di dissipazione energetica

GALLERIA MONTE

- 7. Funzionamento a pelo libero, localizzazione risalto
- 8. Aerazione della corrente e sollecitazione della calotta

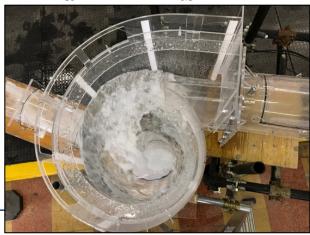
GALLERIA VALLE

- 9. Funzionamento a pelo libero, localizzazione risalto
- 10. Aerazione della corrente e sollecitazione della calotta


Prova	Q _R [mc/s]	Q _M [l/s]
1	10	10.6
2	20	21.1
3	30	31.7
4	38	40.2
5	53	56.0
6	61	64.5
7	70	74.0

Funzionamento

$$Q_R=20 \text{ mc/s} \implies Q_M=21.1 \text{ l/s}$$

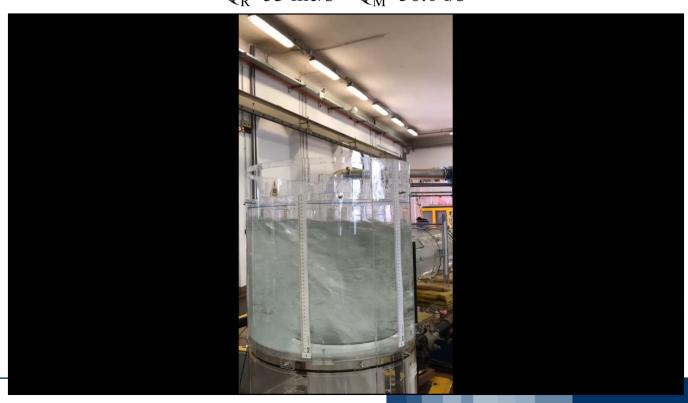


• 1) Portate smaltibili dal sistema pozzo-galleria

Prova	Q reale (mc/s)	Q modello (l/s)	Osservazioni
1	10	10.6	Smaltibile, risalto nella camera di alimentazione
2	20	21.1	Smaltibile, risalto nella camera di alimentazione
3	30	31.7	Smaltibile, risalto nell'ultimo tratto di galleria di monte
4	38	40.2	Massima portata smaltibile a pelo libero, risalto nell'ultimo tratto di galleria di monte
5	53	56.0	Smaltibile con funzionamento in pressione dell'ultimo tratto di galleria di monte
6	61	64.5	Smaltibile con funzionamento in pressione dell'ultimo tratto di galleria di monte
7	70	74	Smaltibile con fuoriuscita dalle finestre di aerazione per circa 8.7 l/s (8.2 mc/s in reale)

$$Q_R = 20 \text{ mc/s} - Q_M = 21.1 \text{ l/s}$$

$$Q_R = 53 \text{ mc/s} - Q_M = 56.0 \text{ l/s}$$

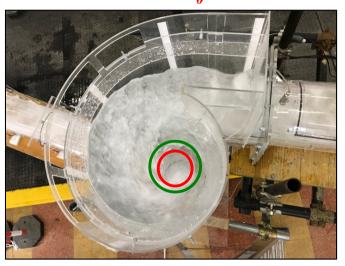

• 2) Livelli massimi nella camera di alimentazione

Prova	Q _R [m ³ /s]	Q _M [l/s]	h _{max} modello [cm]	h _{max} reale [m]	progressiva modello [cm]	progressiva reale [m]
1	10	10.6	16.8	2.60	55	8.5
2	20	21.1	24.5	3.80	60	9.3
3	30	31.7	29.5	4.57	86	13.3
4	38	40.2	34.0	5.27	79	12.2
5	53	56.0	42.0	6.50	78	12.1
6	61	64.5	42.0	6.50	60-110	9.3-17.1
7	70	74.0	47.0	7.29	18-86	2.8-13-3

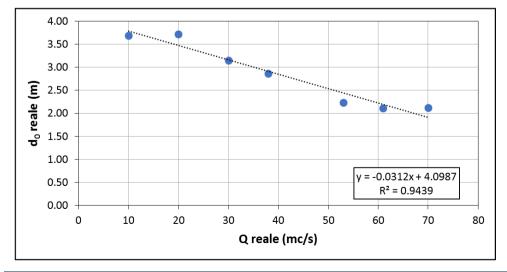
 $h_{\text{mensola}} = 42 \text{ cm } (6.50 \text{ m in reale})$

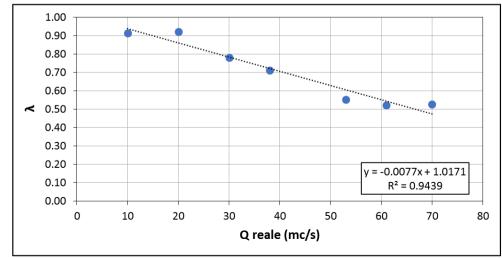
Per portate da Q=53 mc/s (56.0 l/s nel modello fisico) il tirante massimo arriva a interessare la mensola di contenimento dei livelli

$$Q_R = 53 \text{ mc/s} - Q_M = 56.0 \text{ l/s}$$



• 3) Air core (diametro di aerazione del pozzo verticale)


Misura $d_0 D$



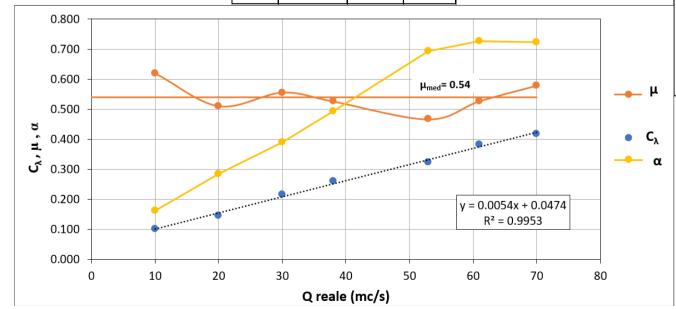
$$\lambda = \frac{d_0}{D}$$

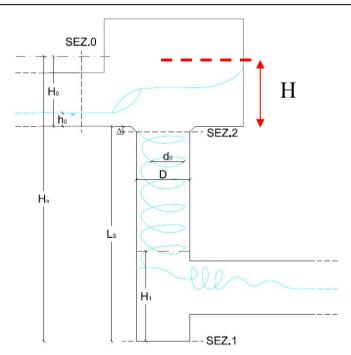
Viparelli (1950)
$$\lambda_{\text{min}} = 0.5$$

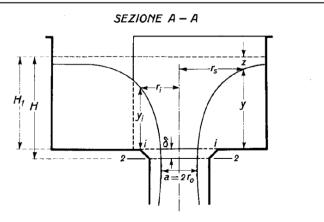
Prova	Q _R [m ³ /s]	Q _M [l/s]	d₀ modello [cm]	d₀ reale [m]	χ
1	10	10.6	23.8	3.69	0.92
2	20	21.1	24.0	3.72	0.92
3	30	31.7	20.3	3.15	0.78
4	38	40.2	18.5	2.87	0.71
5	53	56.0	14.4	2.23	0.55
6	61	64.5	13.6	2.11	0.52
7	70	74.0	13.7	2.12	0.53

• 4) Coefficiente di efflusso

Applicando l'equilibrio dei momenti delle quantità di moto rispetto all'asse del pozzo e il bilancio dell'energia tra la SEZ.0 e la SEZ.2:

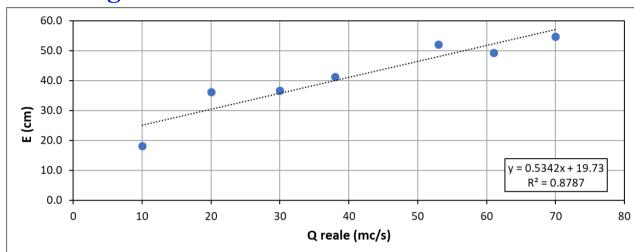

$$Q = C_{\lambda} \frac{\pi}{4} D^2 \sqrt{2g(H + \Delta)} \longrightarrow C_{\lambda} = \frac{Q}{\frac{\pi}{4} D^2 \sqrt{2g(H + \Delta)}}$$

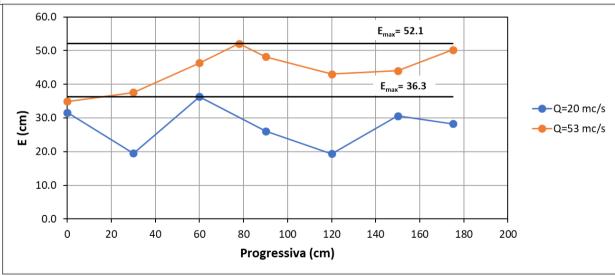

$$Q = \mu \frac{\pi}{4} (D^2 - d_0^2) \sqrt{2g(H + \Delta)} \quad \longrightarrow \quad \mu = \frac{Q}{\frac{\pi}{4} (D^2 - d_0^2) \sqrt{2g(H + \Delta)}}$$


$$C_{\lambda} = \mu \times \alpha$$

$$\alpha = (D^2 - d^2)$$

Prova	$Q_R [m^3/s]$	Q _M [l/s]	C_{λ}
1	10	10.6	0.100
2	20	21.1	0.145
3	3 30 31.7		0.217
4	38	40.2	0.260
5	53	56.0	0.324
6	61	64.5	0.383
7	70	74.0	0.418



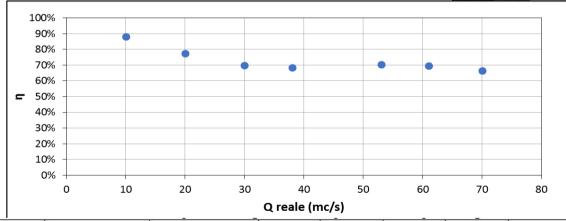


• Energia massima

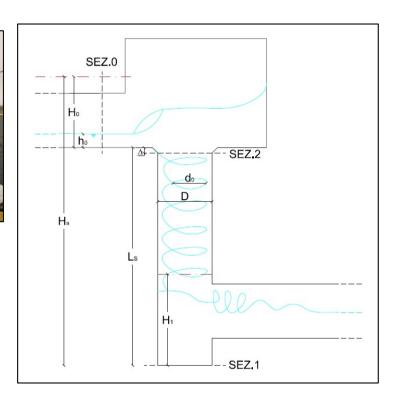
• 5) Aerazione della corrente

Prova	Q reale [m³/s]	Q modello [l/s]	P modello [cm H2O]	P reale [cm H2O]
1	10	10.6	-0.53	-8.18
2	20	21.1	-0.19	-2.93
3	30	31.7	-0.21	-3.18
4	38	40.2	-0.64	-9.88
5	53	56.0	-0.18	-2.85
6	61	64.5	-0.33	-5.19
7	70	74.0	-0.21	-3.29

Limitate pressioni negative osservate in sommità Sufficiente aerazione della corrente



• 6) Efficienza di dissipazione energetica del pozzo $H_1 \rightarrow misurato$


Tra SEZ.0 e SEZ.1:

$$\eta = \frac{\Delta H}{H_a} \quad \Delta H = H_a - H_1 \quad H_a = H_0 + L_S$$

$$H_0 = h_0 + \frac{V_0^2}{2g} \qquad \begin{cases} h_0 \to misurato \\ V_0 = \frac{Q}{A_0} \end{cases}$$

	Prova	Q reale [m³/s]	Q modello [l/s]	<u>h</u> ₀ [cm]	E ₀ [cm]	H ₀ [cm]	H ₁ [cm]	ΔH [cm]	n
	1	10	10.6	2.0	79.5	183.7	21.7	162.0	88%
	2	20	21.1	4.4	46.7	150.9	33.9	117.0	78%
	3	30	31.7	5.6	58.2	162.4	49.0	113.4	70%
	4	38	40.2	6.8	60.2	164.4	52.1	112.3	68%
	5	53	56.0	10.7	45.1	149.3	44.4	104.9	70%
-	6	61	64.5	11.4	50.9	155.1	47.1	108.0	70%
	7	70	74.0	13.0	49.9	154.1	51.5	102.6	67%

$$\eta = 65 \div 90\%$$

• 7) Funzionamento a pelo libero, localizzazione risalto

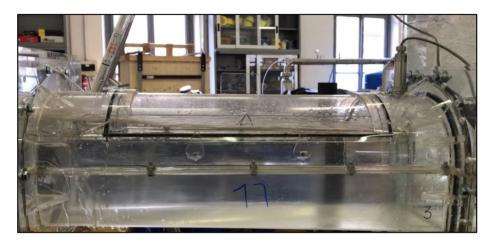
Q reale [m³/s]	Q modello [l/s]	localizzazione	progressiva modello [cm]	progressiva reale [m]
10	10.6	camera di alimentazione	22	508.2
20	21.1	camera di alimentazione	15	507.1
30	31.7	galleria di monte	23	501.2
38	40.2	galleria di monte	44	498.0
53	56.0	galleria di monte	74	493.3
61	64.5	galleria di monte	180	476.9
70	74.0	galleria di monte	384	445.3
	10 20 30 38 53 61	10 10.6 20 21.1 30 31.7 38 40.2 53 56.0 61 64.5	10 10.6 camera di alimentazione 20 21.1 camera di alimentazione 30 31.7 galleria di monte 38 40.2 galleria di monte 53 56.0 galleria di monte 61 64.5 galleria di monte	Q reale [m³/s] Q modello [l/s] localizzazione modello [cm] 10 10.6 camera di alimentazione 22 20 21.1 camera di alimentazione 15 30 31.7 galleria di monte 23 38 40.2 galleria di monte 44 53 56.0 galleria di monte 74 61 64.5 galleria di monte 180

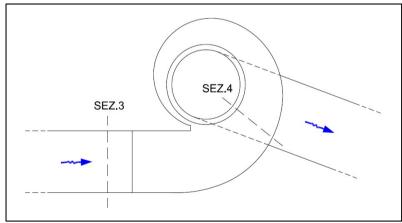
 $Q_{max_pelo_libero} = 40.2 l/s (38 mc/s in reale)$

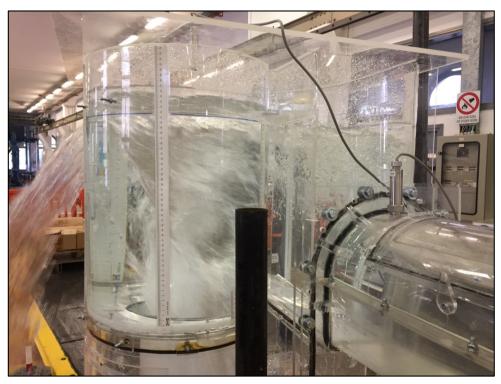
$$Q_R = 38 \text{ mc/s} - Q_M = 40.2 \text{ l/s}$$

Il risalto si localizza all'interno della camera di alimentazione del pozzo a vortice fino alla portata Q_M =27.5 l/s $(Q_R$ =26 mc/s).

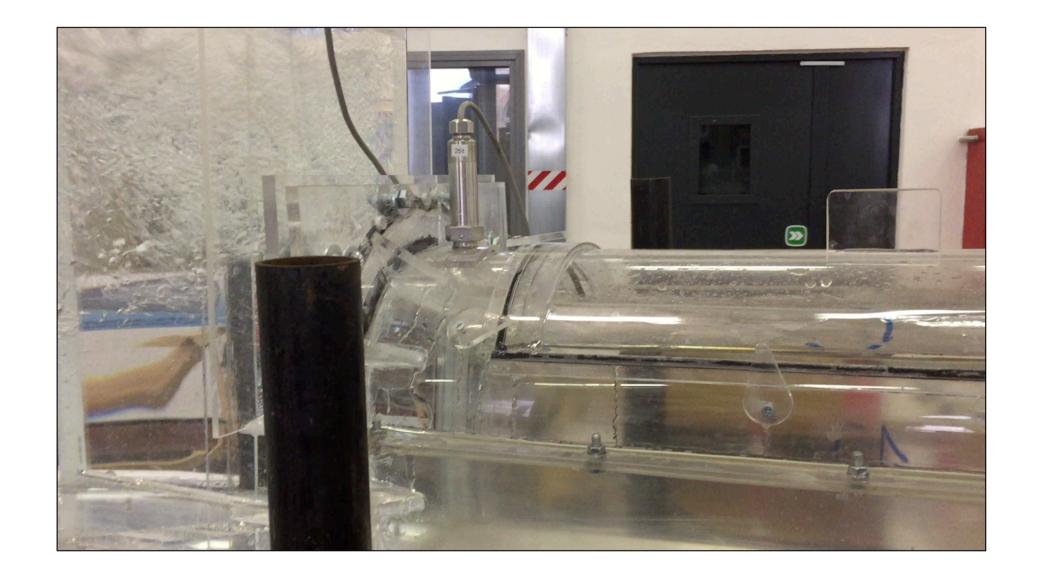
Per la portata Q_M =56.0 l/s (Q_R =53 mc/s) si localizza negli ultimi 12 m della galleria di monte.


$$Q_R = 53 \text{ mc/s} - Q_M = 56.0 \text{ l/s}$$

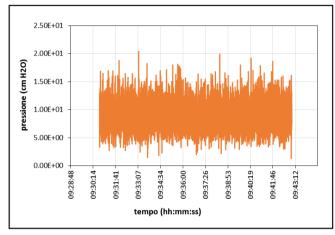




Transitorio con bolla d'aria in pressione per Q=70 mc/s



Prova	Q reale [m³/s]	Q modello [l/s]	h ₃ (cm)	V ₃ (m/s)	E ₃ (cm)	E ₄ (cm)
5	53	56.0	32.0	1.17	38.9	38.0
6	61	64.5	34.6	1.34	43.8	42.0
7	70	74.0	38.5	1.54	50.6	47.0



• 8) Aerazione della corrente e sollecitazione della calotta

Pressioni prossime allo zero — Sufficiente aerazione della corrente

Prova	Q reale [m³/s]	Q modello [l/s]	P modello [cm H2O]	P reale [cm H2O]
1	10	10.6	0.05	0.73
2	20	21.1	-0.33	-5.04
3	30	31.7	-0.02	-0.37
4	38	40.2	0.71	11.00
5	53	56.0	8.82	136.72
6	61	64.5	11.36	176.09
7	70	74.0	15.31	237.27

Funzionamento in pressione per $Q_R=53$ mc/s ($Q_M=56.0$ l/s)

Pressioni massime per Q_R =70 mc/s (Q_M =74.0 l/s)

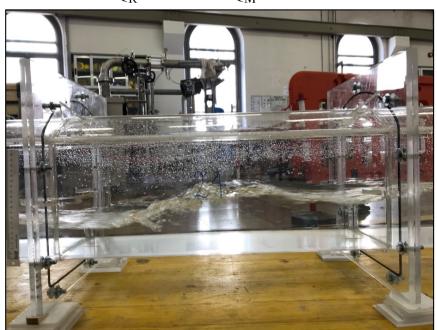
	modello (cm H ₂ O)	reale (cm H ₂ O)	reale (kPa)	reale (kg/m²)
P min	0.7	10.5	1.0	104.5
P max	20.4	316.9	31.1	3166.6
P media	8.8	136.7	13.4	1366.4

2	modello (cm H₂O)	reale (cm H ₂ O)	reale (kPa)	reale (kg/m²)
P min	10.3	159.1	15.6	1589.9
P max	20.9	323.5	31.7	3233.3
P media	15.3	237.3	23.3	2371.2

PROVE SU MODELLO FISICO - GALLERIA VALLE

• 9) Funzionamento a pelo libero, localizzazione risalto

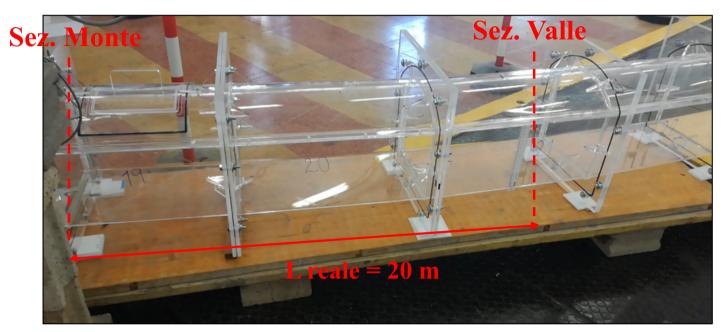
Prova	Q reale [m³/s]	Q modello [l/s]	progressiva modello [cm]	progressiva reale [m]
1	10	10.6	112	528.6
2	20	21.1	287	555.7


La galleria di valle ha sempre un funzionamento a pelo libero con iniziale moto in corrente veloce

Per le portate Q=10 mc/s e Q=20 mc/s si ha un passaggio in corrente lenta con conseguente risalto idraulico localizzato all'interno del tratto in galleria

$$Q_R = 10 \text{ mc/s} - Q_M = 10.6 \text{ l/s}$$

$$Q_R = 20 \text{ mc/s} - Q_M = 21.1 \text{ l/s}$$



PROVE SU MODELLO FISICO – GALLERIA VALLE

• Energia della corrente

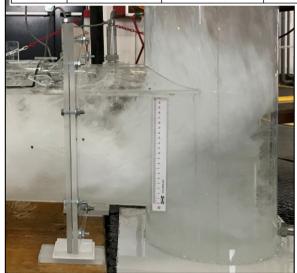
$$H_M = h_M + \frac{V_M^2}{2g}$$
 — Misurata direttamente

 $H_V = h_V + \frac{V_V^2}{2g}$ — Determinata da misura di h_V

$$\Delta H = H_M - H_V$$
$$H_M > H_V$$

La galleria di valle ha un iniziale funzionamento in corrente veloce

Prova	Q reale [mc/s]	Q modello [l/s]	H _M (cm)	h _V (cm)	H _V (cm)	ΔH (cm)
1	10	10.6	18.7	5.0	8.4	10.4
2	20	21.1	30.9	4.8	19.4	11.5
3	30	31.7	46.0	7.0	22.5	23.5
4	38	40.2	49.1	11.3	20.8	28.3
5	53	56.0	41.4	15.5	25.4	16.1


PROVE SU MODELLO FISICO - GALLERIA VALLE

• 10) Aerazione della corrente e sollecitazione della calotta

Prova	Q reale	Q modello	P1 modello	P1 reale	P2 modello	P2 reale
	[m ³ /s]	[l/s]	[cm H2O]	[cm H2O]	[cm H2O]	[cm H2O]
1	10	10.6	0.05	0.75	-0.02	-0.35
2	20	21.1	0.40	6.17	-0.07	-1.01
3	30	31.7	0.42	6.57	0.25	3.94
4	38	40.2	0.61	9.48	0.55	8.51
5	53	56.0	-0.54	-8.42	-0.28	-4.36
6	61	64.5	-0.40	-6.25	-0.31	-4.81
7	70	74.0	-0.43	-6.61	-0.30	-4.70

Nel primo tratto di galleria di valle esiste dissipazione energetica

Fino alla portata $Q_R=38$ mc/s $(Q_M=40.2 \text{ l/s})$ non si sono evidenziati valori rilevanti di pressione/depressione

 $Q_R = 70 \text{ mc/s} - Q_M = 74.0 \text{ l/s}$

19	modello (cm H₂O)	reale (cm H ₂ O)	reale (kPa)	reale (kg/m²)
P1 min	-8.6	-132.9	-13.0	-1328.5
P1 max	6.5	100.4	9.8	1003.7
P1 media	-0.4	-6.6	-0.6	-66.1

9	modello (cm H₂O)	reale (cm H ₂ O)	reale (kPa)	reale (kg/m²)
P2 min	-8.3	-128.7	-12.6	-1285.9
P2 max	8.6	133.7	13.1	1335.7
P2 media	-0.3	-4.7	-0.5	-46.9

CONCLUSIONI

POZZO A VORTICE

- ✓ 1) Il manufatto è in grado di smaltire fino alla portata Q_R =61 mc/s (Q_M =64.5 l/s) Si è osservato risalto idraulico localizzato all'interno della camera di alimentazione fino alla portata Q_R =26 mc/s (Q_M =27.5 l/s)
- \checkmark 2) Il coefficiente di efflusso C_{λ} varia pressochè linearmente al variare della portata, da un valore di 0.10 a 0.42
- 3) I livelli massimi sono sempre inferiori alla mensola di contenimento dei livelli, che viene interessata per portate da $Q_R=53 \text{ mc/s} (Q_M=56.0 \text{ l/s})$
- 4) L'aerazione della corrente attraverso le finestrature è sempre sufficiente
- 5) Il diametro di aerazione del pozzo verticale (air core) rimane sempre sufficiente, con un valore minimo del parametro λ =0.52 per la portata massima Q_R =61 mc/s (Q_M =64.5 l/s)
- ✓ 6) L'efficienza di dissipazione energetica η è compresa tra il 65% e il 90%

GALLERIA MONTE

- ✓ 7) Fino alla portata Q_R =38 mc/s (Q_M =40.2 l/s) si ha un funzionamento a pelo libero, per portate superiori si ha funzionamento in pressione e risalto localizzato lungo la galleria di monte
- 8) L'aerazione della corrente è sempre sufficiente. Con funzionamento in pressione si ha una sollecitazione della calotta per 32 kPa (3250 kg/mq) in corrispondenza della portata massima Q_R=70 mc/s (Q_M=74.0 l/s)

GALLERIA VALLE

- 9) Si ha sempre un funzionamento a pelo libero, con fenomeni vorticosi di dissipazione energetica lungo il primo tratto di sviluppo della galleria. Il funzionamento iniziale è sempre in corrente veloce, con risalto spinto a valle $(H_M>H_V)$ e localizzato all'interno della galleria per le portate $Q_R=10 \text{ mc/s}$ $(Q_M=10.6 \text{ l/s})$ e $Q_R=20 \text{ mc/s}$ $(Q_M=21.1 \text{ l/s})$
- ✓ 10) Si ha interessamento della calotta con sollecitazioni comprese tra -15.7 kPa (-1600 kg/mq) e 16.0 kPa (1630 kg/mq)