Soil mprovement history, capabilities, and outlook

Report by the Committee on Placement and Improvement of Soils of the Geotechnical Engineering Division of the American Society of Civil Engineers

Robert D. Anderson Ara Arman John P. Bara J. Richard Bell Ralph E. Brown J. Richard Cheeks Klaus Engelhardt Carl W. Garbe Edward D. Graf Wesley G. Holtz Henry W. Janes Walter V. Jones Robert I. Kaufman James E. Laier David P. McKittrick William R. Pully Gilbert L. Roderick Roger K. Seals David F. Sheaff Vernon A. Smoots Marshall R. Thompson Frank C. Townsend William G. Weber, Jr. Anwar E. Z. Wissa Donald L. York James K. Mitchell, Chairman

February 1978

Published by American Society of Civil Engineers 345 East 47th Street New York, New York 10017 \$8.00

© Copyright 1978 by the American Society of Civil Engineers TABLE OF CONTENTS

		PAGE
Ι.	INTRODUCTION	1
11.	SOIL MOISTURE IN ENGINEERING WORKS	4
	Introduction	4
	Ancient Times	4
	Roman Times	5
	Middle Ages	6
	Colonial Period	7
	1776 to 1876 (First American Century)	9
	1876 to 1976 (Second American Century)	13
	References	26
111.	CURRENT PRACTICES IN THE TREATMENT OF SOFT FOUNDATIONS	30
	Introduction	30 32
	Removal of Soft Soils by Excavation Removal of Soft Soils by Displacement	32
	Increment of Stage Construction of Embankments	36
	Stabilization of Embankments on Soft Foundations with Berms	37
	Lightweight Fills	38
	Structural Fills	39
	Preloading	40
	Deep Compaction	44
	Grouting	44
	Electro-Osmosis	46
	Blasting	47
	Summary	49
	References	50
IV.	ADMIXTURE STABILIZATION	52
	Introduction	52
	Stabilization Mechanisms	54
	Concepts for Successful Admixture Stabilization	54 56
	Geotechnical Applications of Admixture Stabilization Summary	64
	References	65
	References	00
v.	MASSIVE COMPACTION OF GRANULAR SOIL	67 67
	Introduction Basic Concept	68
	Shallow Compaction Methods	68
	Deep Compaction Methods	69
	Control	75
	Case Histories	79
	Discussion	89
	Conclusions	94
	References	96
VI.	REINFORCEMENT - COMPRESSION ELEMENTS	98
	Introduction	98
	Available Methods	98
	References	117

		PAGE
VII.	REINFORCEMENT - TENSION ELEMENTS	121
	Introduction	121
	Prehistoric and Early Qualitative Practice	121
	Retaining Walls Using Reinforced Soil Backfill	123
	Strength of the Soil-Tie Connection	125
	Cohesive Soils	128
	Mechanism of Reinforced Earth	129
	Tie Force Distribution in Full Scale Walls	129
	Additional Considerations - Reinforced Earth Walls	131
	Other Applications for Reinforced Earth	134
	Relative Advantages over Conventional Construction	135
	Conclusions	136
	References	137
VIII.	COLLAPSIBLE SOILS AND THEIR STABILIZATION	141
	Introduction	141
	Qualitative Methods of Predicting Susceptibility	
	to Collapse	143
	Quantitative Methods for Predicting Soil Collapse	144
	Limitations of Current Prediction Methods	148
	Current Treatment Methods for Collapsing Soils	148
	Conclusions	150
	References	151
IX.	SOIL PLACEMENT AND IMPROVEMENT (Results of a Delphi Survey)	153
	Introduction	153
	Survey Methodology	153
	Questionnaires and Analysis	156
	Results	157
	Discussion of Results	164
	Conclusions	169
	Note	169
APP	ENDIX I LIST OF PARTICIPANTS IN DELPHI SURVEY	170
APPI	ENDIX II BASIC MECHANISM OF REINFORCED EARTH	172
APPI	ENDIX III STATIC ANALYSIS OF REINFORCED EARTH	178

INTRODUCTION

Soil, nature's most abundant construction material, has been used by man for his engineering works since prior to the beginnings of recorded history. Virtually all construction is done on, in, or with soil, but not always are the natural soil conditions adequate to accomplish the work at hand. When poor soil conditions are encountered, the engineer has, apart from abandoning the project, four alternatives: (1) bypass the poor soil, for example, by moving to a new site or through the use of a deep foundation, (2) remove the poor material and replace it with a good one, (3) redesign the structure for the poor conditions, or (4) treat the soil to improve its properties. Each of these alternatives has been utilized extensively in the past. As the scarcity of good sites and materials intensifies, it is likely that the importance of the fourth alternative will increase in the future.

As the United States paused during the Bicentennial Year of 1976 to take stock of its past, present, and future, the GT Division Committee on Placement and Improvement of Soils considered it appropriate also to review the history, assess the present capabilities, and project the future of some of the methods and technology for soil and site improvement. Accordingly a Committee-sponsored program, "New Directions in Placement and Improvement of Soils," was developed for presentation at the ASCE Annual Convention and Exposition, "CE 76" held in Philadelphia, September 27 - October 1, 1976. The series of papers prepared by members of the Committee for that program have been combined to form the Committee Report that follows.

1