

PROCEEDINGS OF THE SECOND EUROPEAN SYMPOSIUM ON PENETRATION TESTING / ESOPT II / AMSTERDAM / 24-27 MAY 1982

Penetration Testing

Edited by A.VERRUIJT Delft University of Technology

F.L.BERINGEN Fugro B.V., Leidschendam

E.H.DE LEEUW Delft Soil Mechanics Laboratory

VOLUME ONE: Standard penetration test Dynamic probing / Swedish weight sounding

A.A.BALKEMA/ROTTERDAM/1982

The texts of the various papers in this volume were set individually by typists under the supervision of each of the authors concerned.

For the complete set of two volumes, ISBN 90 6191 250 4 For volume 1, ISBN 90 6191 251 2 For volume 2, ISBN 90 6191 252 0

© 1982 A.A.Balkema, P.O.Box 1675, 3000 BR Rotterdam, Netherlands Distributed in USA & Canada by: MBS, 99 Main Street, Salem, NH 03079, USA Printed in the Netherlands Proceedings of the Second European Symposium on Penetration Testing / Amsterdam / 24-27 May 1982

Table of contents

Introduction	XI
Standard penetration test	
Standard penetration test – State-of-the-art report Ivan K.Nixon	3
SPT and the compressibility of cohesionless soils A.G.Anagnostopoulos & B.P.Papadopoulos	25
Prediction of the bearing capacity of piles based exclusively on N values of the SPT Luciano Décourt	29
Modulus of elasticity for sand determined by SPT and CPT H.Denver	35
SPT blowcount variability correlated to the CPT B.J.Douglas	41
New analytical correlations between SPT, overburden pressure and relative density F.Giuliani & F.L.Giuliani Nicoll	47
The use and interpretation of SPT results for the determination of axial bearing capacities of piles driven into carbonate soils and coral <i>J. Hagenaar</i>	51
Drill rod energy as a basis for correlation of SPT data J.R. Hall	57
Experience on a standard penetration test Huang Shi-ming	61
Correlation of N value with S-wave velocity and shear modulus Tsuneo Imai & Keiji Tonouchi	67
Relationships between N value and dynamic soil properties Tsuneo Imai & Koichiro Yokota	73
Prediction of liquefaction potential in Japan using N-values of SPT Toshio Iwasaki, Susumu Yasuda, Fumio Tatsuoka & Ken-ichi Tokida	79
Correlation between SPT values and electrical resistivities of subsurface strata	85
SPT - CPT correlations J. Kruizinga	91
Direct and indirect determination of alluvial sand deformability E.Maranha das Neves	95
Comparison of the results from static and dynamic penetration tests, in situ plate tests and laboratory compressibility tests A.Marcu, M.Popescu, T.Abramescu & C.Balacciu	101

Effects of rod diameter in the standard penetration test Kazuaki Matsumoto & Mikio Matsubara	107
Validity of existing procedures for the interpretation of SPT and CPT results T.K.Naturajan & D.S.Tolia	113
Mechanics base of standard penetration test values and its application to bearing capacity prediction Y.Nishida, K. Yokoyama, II.Sekiguchi & T.Matsumoto	119
Relationships between N-value by SPT and LLT measurement results Satoru Ohya, Tsuneo Imai & Mikio Matsubara	125
Assessment of indepth densification of sandfill due to compaction in a reclamation area by cone pene- tration resistance S.D.Ramaswamy & K.Y. Yong	131
Pressuremeter correlations with standard penetration and cone penetration tests S.D.Ramaswamy, I.U.Daulah & Z.Hasan	137
Pitfalls of the SPT	143
Guy Sangleral & Therry-Robert A Sangleral Penetration tests for determination of characteristics of flood dike materials	147
Dz. Sarac & M. Popović	1.17
Prediction of engineering behaviour of sands from standard penetration tests K.R.Saxena & G.T.Srinivasulu	153
Application of N-value to design of foundations in Japan Yukitake Shioi & Jiro Fukui	159
Wave propagation effects induced by standard penetration tests J.H. Troncoso	165
Comparison between N-value and pressuremeter parameters II. Tsuchiya & Y. Toyooka	169
On the standardization of the SPT and cone penetration test $Z, Q, Wang \notin W X, Lu$	175
Correlations of penetration test results with in-situ and laboratory test data J.L.Withiam, T.J.Siller, R.M.Bort, A.J.Eggenberger, P.P.Christiano & U.Dayal	183
Dynamic probing / Swedish weight sounding	
Dynamic penetration lesting – State-of-the-art report K.J.Melzer & U.Smoltczyk	191
The weight sounding test (WST) – State-of-the-art report B.B.Broms & U.Bergdahl	203
Two decades of dynamic cone penetration testing in India V.S.Aggarwal	215
Pile driving, a dynamic penetration test? F.B.J. Barends & II.L. Koning	223
Calculation of settlements on sands from field test results U.Bergdahl & E.Ottosson	229
Statistical comparison between the results of dynamic and static penetrometers for Rhineland silt B.Biedermann	235
Correlations between the results of sounding and laboratory tests for Rhineland silt and their use for calculations for foundation design <i>B.Biedermann</i>	239
Pore water pressures generated during dynamic penetration testing. C.R.I.Clayton & S.S.Dikran	245
Comparative study of DPB and IS dynamic sounding test for Tapi alluvium M.D.Desai & B.J.Mehta	251
A site investigation through penetration tests M.U.Ergun	257
Various types of penetrometers, their correlations and field applicability <i>M.C.Goel</i>	263

The use of a light percussion sounding apparatus in road engineering <i>A.de Henau</i>	271
The application of a portable pavement dynamic cone penetrometer to determine in situ bearing properties of road pavement layers and subgrades in South Africa <i>E.G.Kleyn, J.II.Maree & P.F.Savage</i>	277
Investigation of possibilities of sounding technique for division of soil massive layers B.I.Kulachkin, V.P.Otrepiev, M.I.Smorodinov & A.Z.Ghister	283
Dynamic probing research for pile driving predictions in the Netherlands W. van Leijden, H.M.A. Pachen & J. V. van den Berg	285
Estimation of the sensitivity of soft clays from static and weight sounding tests B.Möller & U.Bergdahl	291
Comparative study of static and dynamic penetration tests currently in use in Japan T.Muromachi & S.Kobayashi	297
Theory and practice of a soil hardness tester YH-62 Yasushi Nakayama	303
Classification of submerged sediments by dynamic penetrometers Behnam Nikakhtar, Joseph N.Suhayda & Mehmet T.Tumay	309
Some aspects concerning the study of foundation soils, using conc penetration tests <i>M.Päunescu & Agneta Gruia</i>	317
Comparison of some dynamic, nondestructive test results for different geological conditions Joanna Pintńska	323
Effect of velocity on penetrometer resistance T.J.Poskitt & C.Leonard	331
Dynamic cone probing tests in gravelly soils B.Govind Rao, D.R. Narahari & G.R. Balodhi	337
The use of dynamic soundings in evaluating settlements L.H.Swann	345
Cone penetration tests (CPT) on clay and silt M. Tammirinne & V. Leinonen	351
Dynamic probing and practice E. Waschkowski	357
Dynamic probing and site investigation E.Waschkowski	363
Correlation between cone penetration resistance, static and dynamic pipe pile response in clays N.D. Wright, W.R.van Hooydonk & D.J.M.H.Phuimgraaff	369
Influence of pore water pressure on dynamic and static penetration testings N. Yagi, M. Enoki & R. Yatabe	375
Scale modelling of static and dynamic pile penetration Amos Zelikson	381
Cone penetration test	
The static cone penetration test – State-of-the-art report J.de Ruiter	389
Investigation of strength and rheologic properties of weak water-saturated clayey soils by sounding M.Y.Abelev	407
Photoelastic investigation of the stress distribution during penetration H.G.B.Allersma	411

Pressio-penetrometer for geotechnical surveys on land and offshore S.Amar, F.Baguelin & J.F.Jézéquel

Design parameters for sands from CPT G.Baldi, R.Bellotti, V.Ghionna, M.Jamiolkowski & E.Pasqualini

Cone penetration tests, pile bearing capacity and the thesis of Rollberg	
H.K.S.Ph.Begemann	

419

425 433

Design, construction and use of a calibration chamber R.Bellotti, G.Bizzi & V.Ghionna	439
Latest developments in static cone penetrometers and other soil testing equipment (on land - offshore) A.P. van den Berg	447
Finite element analysis of static penetration tests R.de Borst & P.A. Vermeer	457
Predictions of pile behaviour from Dutch cone soundings in Bangkok clay R.Peter Brenner & Somnuck Panichpatananon	463
The analysis of cone resistance ' q_c ' and sleeve friction ' f_s ' as interactive stresses, resulting in a new pile bearing capacity design method N.W.A.Broug	469
An advanced static penetrometer D.Bruzzi & F.Cestari	479
Design of friction piling in Mississippi embayment sands using cone penetrometers C.A.Buhr, L.E.Houghton & R.J.Leonard	487
Pile bearing capacity prediction by means of static penetrometer CPT M.Bustamante & L.Gianeselli	493
Considerations on safety of piled raft foundations E.O.F.Calle & W.J.Heijnen	501
Pore pressures during cone penetration testing R.G.Campanella, D.Gillespie & P.K.Robertson	507
Friction-cone penetration testing in alluvial clays A.Cancelli, R.Guadagnini & M.Pellegrini	513
Relationship between the cone resistance and the undrained shear strength of stiff fissured clays $R.$ Carpentier	519
Determination of shear strength and soil modulus from CPT and other insitu tests Umesh Daval	529
Field tests of marine subsoil improved with explosion method E.Dembicki & N.Kistelowa	535
Lithological and stratigraphical interpretation of discontinuous mechanical penetration tests M.U.A.Depret	541
Influence of the measuring step in discontinuous mechanical penetration tests <i>M.U.A.Depret</i>	551
Cone penetration data developed for a nuclear power plant siting study <i>H.Dezfulian</i>	557
Prediction of settlements and bearing capacities of shallow foundations by self-similar penetration $T.Dietrich, U.Holzlöhner \& J.Lehnert$	561
Correlation of predicted and measured settlements in full scale loading on sand fill N.Ghosh	567
Correlation of static cone resistance with bearing capacity M.C.Goel	575
New guidelines for the use of the inclinometer with the cone penetration test H.C. van de Graaf & J.W.A. Jekel	581
Determination of undrained strengths by cone penetration tests G.T.Houlsby & C.P.Wroth	585
Use of penetration tests in geotechnical survey of sludge beds I.Hrazdilová	591
Calculation of bearing capacity for precast pile by SCPT and equipment used Huang Shi-ming	595
Undrained strength from CPT M.Jamiolkowski, R. Lancellotta, L. Tordella & M. Battaelio	599
Piezometer penetration testing – CUPT G.A.Jones & E.Rust	607
Results and interpretation of cone penetration tests in soils of different mineralogic composition K. Joustra & J. G. de Gijt	615

The influence of the rate of penetration on the cone resistance ' q_c ' in sand W.G.B.te Kamp	627
Three-dimensional analysis of static cone penetration into clay T.Koumoto & K.Kaku	635
The use of cone-penetration tests in geological investigation P.V.F.S. Krajíček & F.D. de Lang	641
CPT's, an excellent aid to determine soil parameters and deviations in the soil profile of the proposed motorway-river crossing near Amsterdam <i>P.V.F.S.Krajiček & J.Kruizinga</i>	651
PAF tests compared with classic tests in Delft soft soil J.Kruizinga	655
Penetration tests in two Norwegian clays Suzanne Lacasse & Tom Lunne	661
Determination of geotechnical parameters of frozen soils by means of the cone penetration test B. Ladanyi	671
The penetro-gammadensimeter J.L.Ledoux, J.Menard & P.Soulard	679
Aspects of penetrometer tests in clay H.J. Luger, P.Lubking & J.D. Nieuwenhuis	683
Detection of liquefiable sand layers by means of quasi-static penetration tests S.Marchetti	689
Factors affecting the measurements and interpretation of quasi static penetration tests in clays A.Marsland & R.S.T.Quarterman	697
Evaluation of a routine design criterion for precast concrete piles driven into low strength soil formations A.Mazzucato & M.Soranzo	703
Some soil parameters determined by cone penetration tests D.Milović & S.Stevanović	709
The static penetration results of varved clays Zb.Mtynarek, A.Niedzielski & W.Tschuschke	715
Generalization of static cone penetration data I.Muhovec & D.Kovačić	721
Development of multi-sensor cone penetrometers T.Muromachi, H.Tsuchiya, Y.Sakai & K.Sakai	727
Site investigation of glacial soils using cone penetration tests D.F.T.Nash & M.J.Duffin	733
In-situ testing to monitor deep sand compaction at Belawan port, Indonesia $R.A.Nicholls$	739
The development of a nuclear density probe in a cone penetrometer J.K.Nieuwenhuis & F.P.Smits	745
Contribution to the calculation of the CPT bearing capacity of pile points J.Nuyens	751
The interpretation of static cone penetrometer tests in soft clays of low plasticity N.J.O'Riordan, J.A.Davies & P.C.Dauncey	755
Boundary effects in the laboratory calibration of a cone penetrometer for sand A.K.Parkin & T.Lunne	761
The use of the electric static cone penetrometer in the determination of the engineering properties of chalk <i>P.T.Power</i>	769
A comparison between cone penetration test results and the performance of small diameter instrumented piles in stiff clay G.Price & I.F. Wardle	775
An example of use of cone penetration test for soil profiling in a remote area S.D.Ramaswamy & M.A.Aziz	781
A dual load range cone penetrometer W I Rieden S Thorbury A Marsland & A Quartermain	787

Experiences with CPT in eastern Naples area F.Rippa & F. Vinale	797
Influence of excess pore pressure on cone measurements P.Rocha Filho	805
Comparative study on cone resistances measured with three types of CPT tips A.H.Rol	813
Monorail piers on shallow foundations, settlement analysis based on Dutch cone data W.H.Roth, T.D.Swantko, U.K.Patil & S.W.Berry	821
The statistical analysis of certain factors influencing cone resistance during static sounding of cohesive soils Guy Sanglerat, Zb. Mlynarek & Thierry-Robert A.Sanglerat	827
Use of a static penetrometer in a softground tunnel E.Santoyo	835
Mechanical and electrical aspects of the electric cone penetrometer tip L.H.J.Schaap & H.M.Zuidberg	841
A method for determining the friction angle in sands from the Marchetti dilatometer test (DMT) John H.Schmertmann	853
Strength and deformation parameters from cone penetration tests K.Senneser, N.Janbu & G.Svanø	863
Penetration pore pressure measured with piezometer cones <i>F.P.Smits</i>	871
Cone penetration tests in dry sand F.P.Smits	877
On estimation of ϕ' for normally consolidated mine tailings by using the pore pressure cone penetrometer Noriaki Sugawara & Masaharu Chikaraishi	883
The piezocone test in clays: Use and limitations F. Tavenas, S. Leroueil & M. Roy	889
The performance of a four-storey building founded on late glacial clays compared with CPT predictions <i>S.Thorburn</i>	895
A combined pore pressure and point resistance probe BA. Torstensson	903
An acoustic cone penetrometer for site investigations Philip T. Tringale & James K. Mitchell	909
Soil exploration in soft clays with the quasi-static electric cone penetrometer Mehmet T.Tūmay, Recep Yilmaz, Yalçin Acar & Eric deSeze	915
The evaluation of pile cap load-settlement diagram from the CPT results J.C. Verbrugge	923
Relation between cone penetration and static loading of piles in locally strongly varying sand layers $M.A.$ Viergever	927
The practical use of the CPT in soil profiling J.de Vos	933
Correlation between the results of static or dynamic probings and pressuremeter tests A. Van Wambeke & J. d'Hemricourt	941
A comparison of the methods of determining settlements in estuarine sands from Dutch cone penetration tests	945
D.L.Webb, K.N.Mival & A.J.Allinson	
Relating cone resistance and pressuremeter test results J.B.M. van Wieringen	951
Prediction of limit load of driven pile by CPT J.Zhou, Y.Xie, Z.S.Zuo, M.Y.Luo & X.J.Tang	957
A penetrometer for simultaneously measuring of cone resistance, sleeve friction and dynamic pore pressure <i>H.M.Zuidberg, L.H.J.Schaap & F.L.Beringen</i>	963
A comparison of downhole and seabed cone penetration tests for offshore foundation studies G.L.van der Zwaag & G.R.Sunderland	971
index to papers of subjects treated	979

х

Proceedings of the Second European Symposium on Penetration Testing / Amsterdam / 24-27 May 1982

Introduction

The first European Symposium on Penetration Testing – ESOPT I – was held in Stockholm, Sweden in 1974. During its Brighton meeting in September 1979 the Sub-Committee on Standardization of Penetration Testing in Europe decided to arrange a second international symposium. The Netherlands National Society for Soil Mechanics & Foundation Engineering was honoured with the request to organize this symposium.

The theme of the second European Symposium on Penetration Testing – ESOPT II – was set to be the interpretation of penetration tests:

- Cone Penetration Test (CPT),
- Standard Penetration Test (SPT),
- Weight Sounding Test (WST) and
- Dynamic Probing Test (DPA and DPB).

Recommended standards for these tests were presented by the Sub-Committee on Standardization of Penetration Testing in Europe to the Executive Committee of the International Society for Soil Mechanics & Foundation Engineering during its Tokyo meeting in July 1977. The recommendations were adopted and have been included in the minutes of the Executive Committee meeting and published in volume 3, page 95–152, of the proceedings of the Tokyo Conference. A further report with a recommended standard for the Light Dynamic Probing Test (DPL) was presented to the Executive Committee at its Stockholm meeting in June 1981 and will be published in the last volume of the proceedings of the Stockholm Conference.

Following a call for papers the Scientifc Committee of ESOPT II was agreeably surprised to receive not less than 168 summaries. 142 of these materialized into symposium papers written by authors from more than 30 different countries all over the world. Roughly 2/3 of these papers are on Cone Penetration Testing, while the remaining 1/3 are equally distributed over Standard Penetration Testing and Weight Sounding Testing plus the Dynamic Probing Tests. About half of all written papers have been selected for short oral presentation at the symposium.

The proceedings of this symposium are divided in two volumes. Volume 1 contains the state-of-the-art reports plus the papers on SPT, WST, DPA, DPB and DPL, while volume 2 contains the state-of-the-art report plus all papers on CPT. The proceedings have been edited by the Scientific Committee of ESOPT II.

The Scientific Committee has had comprehensive discussions about the most efficient way of presenting the written material. Several classifications attempts were made and rejected. Finally it was decided to simply arrange the papers according to the type of test, although it was realized that this method could not yield a unique result since some papers treat more than one test. Within their category the papers are arranged in alphabetic order by the name of the (first) author.

One of the lists the Scientific Committee itself used was considered to be so helpful in finding papers of a certain kind that it was decided to include this list in the proceedings. The list clearly demonstrates that the reader interested in only one of the four types of penetration tests, may also find relevant material in one of the sections