INTERNATIONAL COMMISSION ON LARGE DAMS AUSTALIAN NATIONAL COMMITTEE ON LARGE DAMS

INTERNATIONAL SYMPOSIUM ON SAFETY AND REHABILITATION OF TAILINGS DAMS

Sydney, Wednesday 23 May 1990

Distribution:

Australian National Committee on Large Dams c/o Hydro-Electric Commission, Tasmania GPO Box 355D Hobart Tasmania 7001 Australia Telephone: 61-02-30 5338 Telex: AA 58091 Fax: 61-02-30 5145

FOREWORD

A number of factors has focussed world attention on Tailings Dams in recent years. These include:

- . several catastrophic failures causing significant loss of lives
- . rapid increase in dam heights and volume of waste materials stored
- society's awareness of the huge potential for extensive environmental damage by the escape of hazardous and frequently toxic materials.

Recognition of these matters and that tailings structures have long been designed by empirical means with less than satisfactory performance led to ICOLD's interest and the formation in 1976 of the Technical Committee on Mine and Industrial Tailings Dams. This Committee and its successor from 1983 to 1989 have been responsible for several important publications including a State-of-the-Art Manual, and World Register of Tailings Dams and a report on Tailings Dams Safety Guidelines. A third Committee was appointed by President Veltrop in 1989.

In the absence through sixteen congresses of a question dealing with the topic of Tailings Dams, ICOLD and ANCOLD considered it to be an appropriate topic for the Symposium to be held in Sydney in conjunction with the 58th Executive Meeting.

The Symposium subject was decided to be SAFETY AND REHABILITATION OF TAILINGS DAMS.

Because of the broad theme it was further decided to invite authors to submit papers covering three sub-themes, namely:

- stability under earthquake loading
- static stability including seepage pressures and properties of deposited tailings
- rehabilitation and environmental effects.

The response to the announcement and call for papers confirms the importance of work in this field by dam engineers.

Seven papers were received on earthquake loading, eighteen on static stability and three on rehabilitation and environmental effects. Four papers on static stability also cover the theme of rehabilitation and environmental effects. We wish to thank the authors of the papers and the National Committees for their work and important contribution to the subject.

In this volume we are publishing the presented papers. A second volume will be published after the symposium and will contain the papers by the General Reporter for each sub-theme and an account of the discussion at the symposium.

We sincerely hope the ICOLD Symposium in Sydney in May 1990 will benefit the dam engineering profession and particularly those involved in the field of tailings dams.

Mike Fitzpatrick
Chairman ANCOLD

lule Itahich

CONTENTS

THEME A:	STABILITY UNDER EARTHQUAKE LOADING	
State of the Art Paper		page
WD Liam Finn (Canada M Yogendrakumar RC Lo RH Ledbetter) Seismic response analysis of tailing dams.	7
R1 JH Troncoso (Chile)	Failure risks of abandoned tailings dams.	34
R2 H Yongji (China) Q Ruiwu A Yongzhe	Rehabilitation of a tailings dam with pile-up Directional Blasting.	48
R3 SG Vick (USA)	Risk-based approach to seismic stability and inundation hazard for upstream tailings dams.	53
R4 R Edwards (Chile)	Seismic behaviour of "Los Leones" tailings dam.	63
R5 JH Troncoso (Chile)	Seismic responses of tailings dams built with cohesionless soils to different types of ground motions.	82
R6 RC Lo (Canada) EJ Klohn	Seismic stability of tailing dams.	90
THEME B: STATIO	C STABILITY INCLUDING SEEPAGE PRESSURES AND PROPERTIES OF DEPOSITED TAILINGS.	
R7 PM Griffin (USA)	Control of seepage in tailings dams.	106
R8 AB Kolpachkova (USSI TG Kulchitskaja	R) Effects of technological parameters on tailing dam stabilities.	116

R9 D Raisbeck (Australia)	Engineering properties of sedimented fly ash from brown coal.	125
R10 JJ Cassidy (USA) SL Hui	Flood criteria and the safety of tailings dams.	137
R11 CB Abadjiev (Bulgaria)	Improvement of a tailings dam stability after nine years of operation.	146
R12 RL Schiffman (USA) WD Carrier	Large strain consolidation used in the design of tailings impoundments.	156
R13 VG Panteleev (USSR)	Mechanisms of sluicing dump stop prisms.	175
R14 VG Panteleev (USSR) GA Chugaeva	On some aspects of tailings dikes stability analysis.	185
R15 RE Gelfand (USSR) EA Larina VG Panteleev	Prediction of ash dumps characteristics with regard for their hardening with time.	194
R16 Mr DA Williams (S. Africa) HF Marker Gl McPhail P Greaves	Probability approach of a flow failure occurring at a platinum tailings impoundment in Southern Africa.	204
R17 AJ Massey (Australia) EG Truscott JC Callum	Raising of existing red mud disposal ponds by the upstream and downstream methods.	224
R18 JRG Williamson (S. Africa)	South African tailings dam safety.	235
R19 K Velich (Czechoslovakia)	Safety of tailing dams in Czechoslovakia.	245

	R20 PL Ivanov (USSR) GT Trunkov	Stability increase and volume expansion of tailing dams due to draining and compaction of dam soils by charge explosions.	251		
	R21 Y Kotake (Japan) T Kuroda	Stability of Harukizawa tailings dam on "Shirasu" foundation (volcanic deposit).	260		
	R22 S Murphy P Williams	The application of finite strain consolidation theory to the design of tailings disposal systems.	270		
	R23 R Fell (Australia)	Control of seepage from tailing dams.	282		
	R24 D Brett (Australia)	Duncan colliery tailings disposal "filter dams".	296		
	THEME C: REHABI	LITATION AND ENVIRONMENTAL EFFECTS			
*	R23 R Fell (Australia)	Control of seepage from tailings dams.	282		
*	R24 D Brett (Australia)	Duncan colliery tailings disposal "Filter Dams".	296		
	R25 J Eurenius (Sweden)	Long-term studies and design of tailings dams.	306		
	R26 MP Forrest (USA) AC Connell J Scheuering	Reclamation planning of a tailings impoundment.	316		
	R27 BM Corless (Australia) DJ Glenister	The rehabilitation challenges of bauxite residue disposal operations in Western Australia.	326		
	R7 PM Griffin (USA)	Control of seepage in tailings dams.	106		
	R18 JRG Williamson (S. Africa)	South African tailings dam safety.	235		
	Note: * Paper covers Themes B and C.				