Foundation Vibration Analysis: A Strength-of-Materials Approach

John P. Wolf Andrew J. Deeks

AMSTERDAM • BOSTON • HEIDELBERG • LONDON • NEW YORK • OXFORD PARIS • SAN DIEGO • SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Elsevier Linacre House, Jordan Hill, Oxford OX2 8DP 200 Wheeler Road, Burlington, MA 01803

First published 2004

Copyright © 2004, John P. Wolf and Andrew J. Decks. All rights reserved

The right of John P. Wolf and Andrew J. Deeks to be identified as the authors of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988

No part of this publication may be reproduced in any material form (including photocopying or storing in any medium by electronic means and whether or not transiently or incidentally to some other use of this publication) without the written permission of the copyright holder except in accordance with the provisions of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London, England WIT 4LP. Applications for the copyright holder's written permission to reproduce any part of this publication should be addressed to the publisher

Permissions may be sought directly from Elsevier's Science & Technology Rights Department in Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333, e-mail: permissions@elsevier.co.uk. You may also complete your request on-line via the Elsevier homepage (http://www.elsevier.com), by selecting 'Customer Support' and then 'Obtaining Permissions'

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

Library of Congress Cataloguing in Publication Data

A catalogue record for this book is available from the Library of Congress

ISBN 0 7506 6164 X

For information on all Elsevier publications visit our website at http://books.elsevier.com

Printed and bound in Great Britain by Biddles, Kings Lynn

Contents

Foreword						
Pı	Preface					
Ac	Acknowledgements					
1	Introduction					
1	1.1	Statement of the problem	1			
	1.2	Organisation of the text	7			
2	Concepts of the cone model					
	2.1	Rigorous methods	10			
	2.2	Wave propagation in a truncated semi-infinite homogeneous cone	11			
	2.3	Wave reflection and refraction at a material discontinuity in a cone	17			
	2.4	Disk on the surface of a layered half-space	23			
	2.5	Disk embedded in a layered half-space	24			
	2.6	Foundation embedded in a layered half-space	26			
	2.7	Features of the cone model	28			
3	Initial cone with outward wave propagation					
	3.1	Translational cones	30			
	3.2	Rotational cones	35			
	3.3	Interpretation of the rocking cone	40			
	3.4	Incompressible or nearly-incompressible half-space	44			
		3.4.1 Wave velocity	44			
		3.4.2 Trapped mass	44			
	3.5	Foundation on the surface of a homogeneous half-space	46			
	3.6	Double cones	52			
4	Wave reflection and refraction at a material discontinuity					
	4.1	Reflection coefficient for a translational cone	55			
	4.2	Reflection coefficient for a rotational cone	60			
	4.3	Dynamic stiffness of a surface foundation on a layer overlying a half-space	63			
	4.4	Disk embedded in a homogeneous half-space	70			

	vi.	concins	
	45	Computer implementation	72
	4.6	Termination criteria	81
5	Fou	ndation embedded in a layered half-space	84
	5.1	Stack of embedded disks	84
	5.2	Dynamic flexibility of the free field	80
	5.5	Dynamic stiffness and effective foundation input motion	03
	5.4	Computer Implementation	97
	5.5	Examples	,,
6	Eva	luation of accuracy	106
č	6.1	Foundation on the surface of a layered half-space	107
	6.2	Foundation embedded in a layered half-space	108
	6.3	Large number of cone segments	112
	6.4	Cutoff frequency	113
	6.5	Incompressible case	114
	6.6	Hemi-ellipsoid embedded in a homogeneous half-space	115
	6.7	Sphere embedded in a homogeneous full-space	117
			Contraction of the second
7	Eng	ineering applications	121
	7.1	Machine foundation on the surface of a layered half-space	121
		7.1.1 Dynamic load of single cylinder machine	121
		7.1.2 Dynamic load of two-cylinder machine with cranks at 90°	124
		7.1.3 Dynamic system	125
	7.2	7.1.4 Equations of motion	127
	1.2	Offehere wind turbing tower with a sustien gaigeon foundation	129
	1.3	Offshole whild furbine lower with a suction casson foundation	155
8	Con	cluding remarks	142
č			
Ap	pend	ix A: Frequency-domain response analysis	146
	A.1	Alternative descriptions of harmonic motion	146
	A.2	Complex frequency response function	148
	A.3	Periodic excitation	151
	A.4	Arbitrary excitation	152
Ap	pend	ix B: Dynamic soil-structure interaction	154
	B.1	Equations of motion in total displacement	154
	B.2	Free-field response of site	157
Ap	pend	ix C: Wave propagation in a semi-infinite prismatic bar	162
4 -	nond	iv D. Historical note	1.00
чh	penu	IN D. MISTORICAI MOLE	168
Ap	pendi	ix E: Program CONAN (CONe ANalysis) – user's guide	170
	E.1	Program overview	170
	E.2	Problem description	171

			Contents	VII
	E.3	Using CONAN		173
	E.4	Further processing of results		176
Aŗ	opend	ix F: MATLAB [®] Procedures for cone analysis		177
	F.1	MATLAB overview		177
	F.2	Problem description		178
	F.3	General functions		179
	F.4	Heart of the procedure		181
	F.5	Dynamic stiffness of the free field		185
	F.6	Dynamic stiffness of the foundation		186
	F.7	Effective foundation input motion		190
	F.8	Worked example: seismic response		191
Aŗ	pend	ix G: Analysis directly in time domain		196
	G.1	Flexibility analysis for translation		197
	G.2	Interaction force-displacement relationship in the time domain for translation	1	201
	G.3	Seismic analysis of a rigid block on the surface of a layered half-space		204
	G.4	Rotation analysis		205
References				
Dictionary				
Index				215