# **Soil Mechanics for Unsaturated Soils**

# D. G. Fredlund, Ph.D.

Professor of Civil Engineering University of Saskatchewan Saskatoon, Saskatchewan

# H. Rahardjo, Ph.D.

Senior Lecturer School of Civil and Structural Engineering Nanyang Technological University



A Wiley-Interscience Publication JOHN WILEY & SONS, INC. New York • Chichester • Brisbane • Toronto • Singapore This text is printed on acid-free paper.

Copyright © 1993 by John Wiley & Sons, Inc.

All rights reserved. Published simultaneously in Canada.

Reproduction or translation of any part of this work beyond that permitted by Section 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. Requests for permission or further information should be addressed to the Permissions Department, John Wiley & Sons, Inc., 605 Third Avenue, New York, NY 10158-0012.

This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional services. If legal advice or other expert assistance is required, the services of a competent professional person should be sought.

#### Library of Congress Cataloging in Publication Data:

Fredlund, D. G. (Delwyn G.), 1940-Soil mechanics for unsaturated soils / D. G. Fredlund and H. Rahardjo
p. cm. Includes bibliographical references and index. ISBN 0-471-85008-X
1. Soil mechanics. 2. Soil moisture. 3. Soil—Testing.
I. Rahardjo, H. (Harianto) 11. Title. TA710.5.F73 1993
624.1'5136—dc20
92-30869

Printed in the United States of America

1098765432

#### Dedicated

## to our parents George and Esther Fredlund

### and

### Sugiarto and Pauline Rahardjo

who taught us that the fear of the Lord was the beginning of wisdom and that the love of the Lord makes life worth living

Delwyn G. Fredlund Harianto Rahardjo

# CONTENTS

| CHAPTER 1 | Introduction to Unsaturated Soil Mechanics                 | 1  |
|-----------|------------------------------------------------------------|----|
|           | 1.1 Role of Climate                                        | 1  |
|           | 1.2 Types of Problems                                      | 3  |
|           | 1.2.1 Construction and Operation of a Dam                  | 3  |
|           | 1.2.2 Natural Slopes Subjected to Environmental<br>Changes | 5  |
|           | 1.2.3 Mounding Below Waste Retention Ponds                 | 6  |
|           | 1.2.4 Stability of Vertical or Near Vertical Excavations   | 6  |
|           | 1.2.5 Lateral Earth Pressures                              | 7  |
|           | 1.2.6 Bearing Capacity for Shallow Foundations             | 7  |
|           | 1.2.7 Ground Movements Involving Expansive Soils           | 8  |
|           | 1.2.8 Collapsing Soils                                     | 9  |
|           | 1.2.9 Summary of Unsaturated Soils Examples                | 9  |
|           | 1.3 Typical Profiles of Unsaturated Soils                  | 9  |
|           | 1.3.1 Typical Tropical Residual Soil Profile               | 10 |
|           | 1.3.2 Typical Expansive Soils Profile                      | 11 |
|           | 1.4 Need for Unsaturated Soil Mechanics                    | 12 |
|           | 1.5 Scope of the Book                                      | 13 |
|           | 1.6 Phases of an Unsaturated Soil                          | 14 |
|           | 1.6.1 Definition of a Phase                                | 14 |
|           | 1.6.2 Air-Water Interface or Contractile Skin              | 14 |
|           | 1.7 Terminology and Definitions                            | 15 |
|           | 1.8 Historical Developments                                | 16 |
|           |                                                            | 10 |
| CHAPTER 2 | Phase Properties and Relations                             | 20 |
|           | 2.1 Properties of the Individual Phases                    | 20 |
|           | 2.1.1 Density and Specific Volume                          | 21 |
|           | Soil particles                                             | 21 |
|           | Water phase                                                | 21 |
|           | Air phase                                                  | 21 |
|           | 2.1.2 Viscosity                                            | 23 |
|           | 2.1.3 Surface Tension                                      | 24 |
|           | 2.2 Interaction of Air and Water                           | 25 |
|           | 2.2.1 Solid, Liquid, and Vapor States of Water             | 26 |
|           | 2.2.2 Water Vapor                                          | 26 |
|           | 2.2.3 Air Dissolving in Water                              | 27 |
|           | Solubility of Air in Water                                 | 21 |
|           | Diffusion of Gases Through Water                           | 2  |

| tiv | CON | TENTS |
|-----|-----|-------|
|     |     |       |

|           | 2.3 Volume-Mass Relations                                                              | 29 |
|-----------|----------------------------------------------------------------------------------------|----|
|           | 2.3.1 Porosity                                                                         | 29 |
|           | 2.3.2 Void Ratio                                                                       | 30 |
|           | 2.3.3 Degree of Saturation                                                             | 30 |
|           | 2.3.4 Water Content                                                                    | 31 |
|           | 2.3.5 Soil Density                                                                     | 32 |
|           | 2.3.6 Basic Volume-Mass Relationship                                                   | 32 |
|           | 2.3.7 Changes in Volume-Mass Properties                                                | 33 |
|           | 2.3.8 Density of Mixtures Subjected to Compression of<br>the Air Phase                 | 34 |
|           | Piston-porous stone analogy                                                            | 34 |
|           | Conservation of mass applied to a mixture                                              | 36 |
|           | Soil particles-water-air mixture                                                       | 37 |
|           | Air-water mixture                                                                      | 37 |
| CHAPTER 3 | Stress State Variables                                                                 | 38 |
|           | 3.1 History of the Description of the Stress State                                     | 38 |
|           | 3.1.1 Effective Stress Concept for a Saturated Soil                                    | 38 |
|           | 3.1.2 Proposed Effective Stress Equation for an<br>Unsaturated Soil                    | 39 |
|           | 3.2 Stress State Variables for Unsaturated Soils                                       | 42 |
|           | 3.2.1 Equilibrium Analysis for Unsaturated Soils                                       | 42 |
|           | Normal and shear stresses on a soil element                                            | 42 |
|           | Equilibrium equations                                                                  | 43 |
|           | 3.2.2 Stress State Variables                                                           | 43 |
|           | Other combinations of stress state variables                                           | 44 |
| 1         | 3.2.3 Saturated Soils as a Special Case of Unsaturated<br>Soils                        | 45 |
|           | 3.2.4 Dry Soils                                                                        | 45 |
|           | 3.3 Limiting Stress State Conditions                                                   | 46 |
|           | 3.4 Experimental Testing of the Stress State Variables                                 | 47 |
|           | 3.4.1 The Concept of Axis Translation                                                  | 47 |
|           | 3.4.2 Null Tests to Test Stress State Variables                                        | 48 |
|           | 3.4.3 Other Experimental Evidence in Support of the<br>Proposed Stress State Variables | 48 |
|           | 3.5 Stress Analysis                                                                    | 49 |
|           | 3.5.1 In Situ Stress State Component Profiles                                          | 49 |
|           | Coefficient of lateral earth pressure                                                  | 52 |
|           | Matric suction profile                                                                 | 53 |
|           | Ground surface condition                                                               | 53 |
|           | Environmental conditions                                                               | 53 |
|           | Vegetation                                                                             | 53 |
|           | Water table                                                                            | 54 |
|           | Permeability of the soil profile                                                       | 54 |
|           | 3.5.2 Extended Mohr Diagram                                                            | 54 |
|           | Equation of Mohr circles                                                               | 55 |
|           | Construction of Mohr circles                                                           | 56 |
|           | 3.5.3 Stress Invariants                                                                | 58 |
|           | 3.5.4 Stress Points                                                                    | 58 |
|           | 3.5.5 Stress Paths                                                                     |    |
|           | 3.6 Role of Osmotic Suction                                                            | 59 |
|           |                                                                                        | 63 |

x

|           |      |           | CONTENT                                                      | s xv |
|-----------|------|-----------|--------------------------------------------------------------|------|
| CHAPTER 4 | Mea  | suremen   | ts of Soil Suction                                           | 64   |
|           | 4.1  |           | of Soil Suction                                              | 64   |
|           |      |           | Components of Soil Suction                                   | 64   |
|           |      |           | Typical Suction Values and Their Measuring Devices           | 66   |
|           | 4.2  | Capillari | ty                                                           | 67   |
|           |      | 4.2.1     | Capillary Height                                             | 67   |
|           |      | 4.2.2     | Capillary Pressure                                           | 68   |
|           |      | 4.2.3     | Height of Capillary Risc and Radius Effects                  | 69   |
|           | 4.3  | Measure   | ments of Total Suction                                       | 70   |
|           |      | 4.3.1     | Psychrometers                                                | 70   |
|           |      |           | Seebeck effects                                              | 70   |
|           |      |           | Peltier effects                                              | 70   |
|           |      |           | Peltier psychrometer                                         | 71   |
|           |      |           | Psychrometer calibration                                     | 73   |
|           |      |           | Psychrometer performance                                     | 74   |
|           |      | 4.3.2     | Filter paper                                                 | 77   |
|           |      |           | Principle of measurement (filter paper method)               | 77   |
|           |      |           | Measurement and calibration techniques (filter paper method) | 77   |
|           |      |           | The use of the filter paper method in practice               | 79   |
|           | 4.4  | Measure   | ments of Matric Suction                                      | 80   |
|           |      | 4.4.1     | High Air Entry Disks                                         | 81   |
|           |      | 4.4.2     | Direct measurements                                          | 82   |
|           |      |           | Tensiometers                                                 | 83   |
|           |      |           | Servicing the tensiometer prior to installation              | 84   |
|           |      |           | Servicing the tensiometer after installation                 | 86   |
|           |      |           | Jet fill tensiometers                                        | 86   |
|           |      |           | Small tip tensiometer                                        | 86   |
|           |      |           | Quick Draw tensiometers                                      | 88   |
|           |      |           | Tensiometer performance for field<br>measurements            | 88   |
|           |      |           | Osmotic tensiometers                                         | 90   |
|           |      |           | Axis-translation technique                                   | 91   |
|           |      | 4.4.3     | Indirect Measurements                                        | 93   |
|           |      |           | Thermal conductivity sensors                                 | 95   |
|           |      |           | Theory of operation                                          | 97   |
|           |      |           | Calibration of sensors                                       | 97   |
|           |      |           | Typical results of matric suction measurements               | 99   |
|           |      |           | The MCS 6000 sensors                                         | 99   |
|           |      |           | The AGWA-II sensors                                          | 100  |
|           | 4.5  |           | ments of Osmotic Suction                                     | 104  |
|           |      | 4.5.1     | Squeezing technique                                          | 105  |
| CHAPTER 5 | Flow | v Laws    |                                                              | 107  |
|           | 5.1  | Flow of   | Water                                                        | 107  |
|           |      | 5.1.1     | Driving Potential for Water Phase                            | 108  |
|           |      | 5.1.2     | Darcy's Law for Unsaturated Soils                            | 110  |
|           |      | 5.1.3     | Coefficient of Permeability with Respect to the Water Phase  | 110  |
|           |      |           | Fluid and porous medium components                           | 110  |

|           | Relationship                                                                           |            |
|-----------|----------------------------------------------------------------------------------------|------------|
|           | Relationship between permeability and volume-<br>mass properties                       | 111        |
|           | Effect of variations in degree of saturation on permeability                           | 111        |
|           | Relationship between coefficient of permeability<br>and degree of saturation           | 111        |
|           | Relationship between water coefficient of permeability and matric suction              | 113        |
|           | Relationship between water coefficient of<br>permeability and volumetric water content | 113        |
|           | Hysteresis of the permeability function                                                |            |
|           | 5.2 Flow of Air                                                                        | 116        |
|           | 5.2.1 Driving Potential for Air Phase                                                  | 117        |
|           | 5.2.2 Fick's Law for Air Phase                                                         | 117        |
|           | 5.2.3 Coefficient of Permeability with Respect to Air<br>Phase                         | 117<br>119 |
|           | Relationship between air coefficient of<br>permeability and degree of saturation       | 120        |
|           | Relationship between air coefficient of<br>permeability and matric suction             | 120        |
|           | 5.3 Diffusion                                                                          | 121        |
|           | 5.3.1 Air Diffusion Through Water                                                      | 121        |
|           | 5.3.2 Chemical Diffusion Through Water                                                 | 123        |
|           | 5.4 Summary of Flow Laws                                                               | 123        |
|           |                                                                                        |            |
| CHAPTER 6 | Measurement of Permeability                                                            | 124        |
|           | 6.1 Measurement of Water Coefficient of Permeability                                   | 124        |
|           | 6.1.1 Direct Methods to Measure Water Coefficient of<br>Permeability                   | 124        |
|           | Laboratory test methods                                                                | 124        |
|           | Steady-state method                                                                    | 124        |
|           | Apparatus for steady-state method                                                      | 125        |
|           | Computations using steady-state method                                                 | 126        |
|           | Presentation of water coefficients of<br>permeability                                  | 126        |
|           | Difficulties with the steady-state method                                              | 127        |
|           | Instantaneous profile method                                                           | 127        |
|           | Instantaneous profile method proposed by<br>Hamilton et al.                            | 128        |
|           | Computations for the instantaneous profile method                                      | 129        |
|           | In situ field methods                                                                  | 130        |
|           | In situ instantaneous profile method                                                   | 130        |
|           | Computations for the in situ instantaneous                                             | 131        |
|           | 6.1.2 Indirect Methods to Compute Water Coemctent of<br>Permeability                   | 133        |
|           | Tempe pressure cell apparatus and test                                                 | 135        |
|           | Volumetric pressure plate extractor apparates                                          | 135        |
|           | Test procedure for the volumetric pressure                                             | 136        |
|           | Drying portion of soil-water characteristic<br>curve                                   |            |

|           | CC                                                                                   | ONTENTS XVII  |
|-----------|--------------------------------------------------------------------------------------|---------------|
|           | Wetting portion of the soil-water characteristic curve                               | ic 136        |
|           | Computation of $k_w$ using the soil-water characteristic curve                       | 136           |
|           | 6.2 Measurement of Air Coefficient of Permeability                                   | 138           |
|           | Triaxial permeameter cell for the measuremen<br>of air permeability                  | <i>ut</i> 140 |
|           | Triaxial permeameter cell for air and water<br>permeability measurements             | 140           |
|           | 6.3 Measurement of Diffusion                                                         | 143           |
|           | 6.3.1 Mechanism of Air Diffusion Through High Air<br>Entry Disks                     | 144           |
|           | 6.3.2 Measurements of the Coefficient of Diffusion                                   | 144           |
|           | Procedure for computing diffusion properties                                         | 145           |
|           | 6.3.3 Diffused Air Volume Indicators                                                 | 146           |
|           | Bubble pump to measure diffused air volume                                           | 146           |
|           | Diffused air volume indicator (DAVI)                                                 | 146           |
|           | Procedure for measuring diffused air volume                                          | 148           |
|           | Computation of diffused air volume                                                   | 148           |
|           | Accuracy of the diffused air volume indicator                                        | 149           |
| CHAPTER 7 | Steady-State Flow                                                                    | 150           |
|           | 7.1 Steady-State Water Flow                                                          | 150           |
|           | 7.1.1 Variation of Coefficient of Permeability with<br>Space for an Unsaturated Soil | 151           |
|           | Heterogeneous, isotropic steady-state seepag                                         | e 151         |
|           | Heterogeneous, anisotropic steady-state seepage                                      | 151           |
|           | 7.1.2 One-Dimensional Flow                                                           | 152           |
|           | Formulation for one-dimensional flow                                                 | 153           |
|           | Solution for one-dimensional flow                                                    | 154           |
|           | Finite difference method                                                             | 155           |
|           | Head boundary condition                                                              | 155           |
|           | Flux boundary condition                                                              | 156           |
|           | 7.1.3 Two-Dimensional Flow                                                           | 159           |
|           | Formulation for two-dimensional flow                                                 | 159           |
|           | Solutions for two-dimensional flow                                                   | 160           |
|           | Seepage analysis using the finite element<br>method                                  | 161           |
|           | Examples of two-dimensional problems                                                 | 164           |
|           | Infinite slope                                                                       | 171           |
|           | 7.1.4 Three-Dimensional Flow                                                         | 173           |
|           | 7.2 Steady-State Air Flow                                                            | 175           |
|           | 7.2.1 One-Dimensional Flow                                                           | 175           |
|           | 7.2.2 Two-Dimensional Flow                                                           | 176           |
|           | 7.3 Steady-State Air Diffusion Through Water                                         | 177           |
| CHAPTER 8 | Pore Pressure Parameters                                                             | 178           |
|           | 8.1 Compressibility of Pore Fluids                                                   | 178           |
|           | 8.1.1 Air Compressibility                                                            | 179           |
|           | 8.1.2 Water Compressibility                                                          | 179           |
|           | 8.1.3 Compressibility of Air-Water Mixtures                                          | 179           |
|           | The use of pore pressure parameters in the compressibility equation                  | 179           |

| VIII CONTENT | S |
|--------------|---|
|--------------|---|

|     | 8.1.4      | Components of Compressibility of an Air-Water<br>Mixture                             | 181 |
|-----|------------|--------------------------------------------------------------------------------------|-----|
|     |            | Effects of free air on the compressibility of the mixture                            | 182 |
|     |            | Effects of dissolved air on the compressibility of the mixture                       | 182 |
|     | 8.1.5      | -                                                                                    | 182 |
|     |            | Limitation of Kelvin's equation in formulating the compressibility equation          | 183 |
| 8.2 | Derivati   | ons of Pore Pressure Parameters                                                      | 184 |
|     | 8.2.1      | Tangent and Secant Pore Pressure Parameters                                          | 185 |
|     | 8.2.2      | Summary of Necessary Constitutive Relations                                          | 186 |
|     | 8.2.3      | Drained and Undrained Loading                                                        | 188 |
|     | 8.2.4      | Total Stress and Soil Anisotropy                                                     | 190 |
|     | 8.2.5      | K <sub>0</sub> -Loading                                                              | 191 |
|     | 8.2.6      | Hilf's Analysis                                                                      | 192 |
|     | 8.2.7      | Isotropic Loading                                                                    | 194 |
|     | 8.2.8      | Uniaxial Loading                                                                     | 196 |
|     | 8.2.9      | Triaxial Loading                                                                     | 196 |
|     | 8.2.10     | ) Three-Dimensional Loading                                                          | 199 |
|     | 8.2.11     | α Parameters                                                                         | 200 |
| 8.3 |            | s of the Pore Pressure Equations and isons with Experimental Results                 | 201 |
|     | 8.3.1      | Secant $B_h^*$ Pore Pressure Parameter Derived from Hilf's Analysis                  | 201 |
|     | 8.3.2      | Graphical Procedure for Hilf's Analysis                                              | 202 |
|     | 8.3.3      | Experimental Results of Tangent B Pore Pressure<br>Parameters for Isotropic Loading  | 204 |
|     | 8.3.4      | Theoretical Prediction of <i>B</i> Pore Pressure<br>Parameters for Isotropic Loading | 206 |
|     | 8.3.5      | Experimental Results of Tangent B and A<br>Parameters for Triaxial Loading           | 215 |
|     | 8.3.6      | Experimental Measurements of the $\alpha$ Parameter                                  | 216 |
| She | ar Streng  | th Theory                                                                            | 217 |
| 9.1 |            | of Shear Strength                                                                    | 217 |
|     | 9.1.1      | Data Associated with Incomplete Stress Variable<br>Measurements                      | 224 |
| 9.2 | Failure E  | Envelope for Unsaturated Soils                                                       | 225 |
|     | 9.2.1      | Failure Criteria                                                                     | 225 |
|     | 9.2.2      | Shear Strength Equation                                                              | 227 |
|     |            | Extended Mohr-Coulomb Failure Envelope                                               | 228 |
|     | 9.2.4      | Use of $(\sigma - u_w)$ and $(u_a - u_w)$ to Define Shear Strength                   | 230 |
|     | 9.2.5      |                                                                                      | 231 |
| 9.3 | Triaxial ' | Tests on Unsaturated Soils                                                           | 236 |
|     | 9.3.1      | Consolidated Drained Test                                                            | 238 |
|     | 9.3.2      | Constant Water Content Test                                                          | 238 |
|     | 9.3.3      | Consolidated Undrained Test with Pore Pressure<br>Measurements                       | 240 |
|     | 9.3.4      | Undrained Test                                                                       | 243 |
|     | 9.3.5      | Unconfined Compression Test                                                          | 245 |
|     |            |                                                                                      |     |

X

CHAPTER 9

| CONTENTS | X1X |
|----------|-----|

| 9.4 D   | irect Shea  | r Tests on Unsatured Soils                                     | 247        |
|---------|-------------|----------------------------------------------------------------|------------|
| 9.5 S   | election of | f Strain Rate                                                  | 248        |
|         | 9.5.1 Ba    | ackground on Strain Rates for Triaxial Testing                 | 248        |
|         | 9.5.2 St    | rain Rates for Triaxial Tests                                  | 250        |
|         | 9.5.3 D     | isplacement Rate for Direct Shear Tests                        | 254        |
| 9.6 M   | fultistage  | Testing                                                        | 255        |
| 9.7 N   | Ionlinearit | y of Failure Envelope                                          | 255        |
| 9.8 R   | elationshi  | ps Between $\phi^b$ and $\chi$                                 | 258        |
| Measu   | irement c   | of Shear Strength Parameters                                   | 260        |
| 10.1    | Special D   | esign Considerations                                           | 260        |
|         | 10.1.1      | Axis-Translation Technique                                     | 260        |
|         | 10.1.2      | Pore-Water Pressure Control or Measurement                     | 263        |
|         |             | Saturation procedure for a high air entry<br>disk              | 266        |
|         | 10.1.3      | Pressure Response Below the Ceramic Disk                       | 266        |
|         | 10.1.4      | Pore-Air Pressure Control or Measurement                       | 272        |
|         | 10.1.5      | Water Volume Change Measurement                                | 273        |
|         | 10.1.6      | Air Volume Change Measurement                                  | 275        |
|         | 10.1.7      | Overall Volume Change Measurement                              | 275        |
|         | 10.1.8      | Specimen Preparation                                           | 276        |
|         | 10.1.9      | Backpressuring to Produce Saturation                           | 277        |
| 10.2    | Test Proc   | edures for Triaxial Tests                                      | 279        |
|         | 10.2.1      | Consolidated Drained Test                                      | 280        |
|         | 10.2.2      | Constant Water Content Test                                    | 281        |
|         | 10.2.3      | Consolidated Undrained Test with Pore<br>Pressure Measurements | 281        |
|         | 10.2.4      | Undrained Test                                                 | 282        |
|         | 10.2.5      | Unconfined Compression Test                                    | 282        |
| 10.3    | Test Proc   | edures for Direct Shear Tests                                  | 282        |
| 10.4    | Typical T   | est Results                                                    | 284        |
|         | 10.4.1      | Triaxial Test Results                                          | 284        |
|         |             | Consolidated drained triaxial tests                            | 284        |
|         |             | Constant water content triaxial tests                          | 286        |
|         |             | Nonlinear shear strength versus matric suction                 | 286        |
|         |             | Undrained and unconfined compression tests                     | 288        |
|         | 10.4.2      | Direct Shear Test Results                                      | 289        |
| Plastic | and Lin     | nit Equilibrium                                                | 297        |
|         | Earth Pre   |                                                                | 297        |
|         | 11 1 1      | At Rest Earth Pressure Conditions                              | 298        |
|         | 11.1.2      | Estimation of Depth of Cracking                                | 300        |
|         | 11.1.2      | Extended Rankine Theory of Earth Pressures                     | 30         |
|         | 11.1.5      | Active earth pressure                                          | 30         |
|         |             | Coefficient of active earth pressure                           | 30.<br>304 |
|         |             | Active earth pressure distribution (constant                   | 30-        |
|         |             | matric suction with depth)                                     | 50-        |
|         |             | Tension zone depth                                             | 30         |
|         |             | Active earth pressure distribution (linear                     | 30         |
|         |             | decrease in matric suction to the water table)                 |            |

### CHAPTER 10

CHAPTER 11

|      |            | Active earth pressure distribution when the<br>soil has tension cracks                           | 305 |
|------|------------|--------------------------------------------------------------------------------------------------|-----|
|      |            | Passive earth pressure                                                                           | 307 |
|      |            | Coefficient of passive earth pressure                                                            | 307 |
|      |            | Passive earth pressure distribution (constant<br>matric suction with depth)                      | 307 |
|      |            | Passive earth pressure distribution (linear<br>decrease in matric suction to the water<br>table) | 308 |
|      |            | Deformations with active and passive states                                                      | 308 |
|      | 11.1.4     | Total Lateral Earth Force                                                                        | 309 |
|      |            | Active earth force                                                                               | 310 |
|      |            | Passive earth force                                                                              | 311 |
|      | 11.1.5     | Effect of Changes in Matric Suction on the<br>Active and Passive Earth Pressure                  | 312 |
|      |            | Relationship between swelling pressures and the earth pressures                                  | 313 |
|      | 11.1.6     | Unsupported Excavations                                                                          | 313 |
|      |            | Effect of tension cracks on the unsupported<br>height                                            | 314 |
| 11.2 | Bearing C  | Capacity                                                                                         | 315 |
|      | 11.2.1     | Terzaghi Bearing Capacity Theory                                                                 | 315 |
|      | 11.2.2     | Assessment of Shear Strength Parameters and a Design Matric Suction                              | 317 |
|      |            | Stress state variable approach                                                                   | 317 |
|      |            | Total stress approach                                                                            | 318 |
|      | 11.2.3     | Bearing Capacity of Layered Systems                                                              | 319 |
| 11.3 | Slope Stal |                                                                                                  | 320 |
| 11.5 | 11.3.1     |                                                                                                  |     |
|      | 11.3.1     | Location of the Critical Slip Surface                                                            | 320 |
|      | 11.5.2     | General Limit Equilibrium (GLE) Method                                                           | 321 |
|      |            | Shear force mobilized equation                                                                   | 323 |
|      |            | Normal force equation                                                                            | 324 |
|      |            | Factor of safety with respect to moment<br>equilibrium                                           | 324 |
|      |            | Factor of safety with respect to force equilibrium                                               | 325 |
|      |            | Interslice force function                                                                        | 325 |
|      |            | Procedures for solving the factors of safety equation                                            | 327 |
|      |            | Pore-water pressure designation                                                                  | 328 |
|      | 11.3.3     | Other Limit Equilibrium Methods                                                                  | 330 |
|      | 11.3.4     | Numerical Difficulties Associated with the<br>Limit Equilibrium Method of Slices                 | 332 |
|      | 11.3.5     | Effects of Negative Pore-Water Pressure on<br>Slope Stability                                    | 333 |
|      |            | The "total cohesion" method                                                                      | 333 |
|      |            | Two examples using the ''total cohesion''<br>method                                              | 334 |
|      |            | Example no. 1                                                                                    | 334 |
|      |            | Example no. 2                                                                                    | 338 |
|      |            | The "extended shear strength" method                                                             | 340 |
|      |            | General layout of problems and soil properties                                                   | 340 |
|      |            | Initial conditions for the seepage analysis                                                      | 342 |
|      |            | Seepage and slope stability results under<br>high-intensity rainfall conditions                  | 344 |

XX

| CONTENTS | XXI |
|----------|-----|
|          |     |

| CHAPTER 12 | Volu | 346                                                       |                                                                                                                 |     |
|------------|------|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----|
|            | 12.1 | Literature                                                | Review                                                                                                          | 346 |
|            | 12.2 | Concepts                                                  | of Volume Change and Deformation                                                                                | 349 |
|            |      | 12.2.1                                                    | Continuity Requirements                                                                                         | 349 |
|            |      | 12.2.2                                                    | Overall Volume Change                                                                                           | 350 |
|            |      | 12.2.3                                                    | Water and Air Volume Changes                                                                                    | 351 |
|            | 12.3 | Constituti                                                | ve Relations                                                                                                    | 351 |
|            |      | 12.3.1                                                    | Elasticity Form                                                                                                 | 351 |
|            |      |                                                           | Water phase constitutive relation                                                                               | 353 |
|            |      |                                                           | Change in the volume of air                                                                                     | 353 |
|            |      |                                                           | Isotropic loading                                                                                               | 354 |
|            |      |                                                           | Uniaxial loading                                                                                                | 354 |
|            |      |                                                           | Triaxial loading                                                                                                | 354 |
|            |      |                                                           | K <sub>0</sub> -loading                                                                                         | 356 |
|            |      |                                                           | Plane strain loading                                                                                            | 357 |
|            |      |                                                           | Plane stress loading                                                                                            | 357 |
|            |      | 12.3.2                                                    | Compressibility Form                                                                                            | 357 |
|            |      | 12.3.3                                                    | Volume-Mass Form (Soil Mechanics<br>Terminology)                                                                | 358 |
|            |      | 12.3.4                                                    | Use of $(\sigma - u_w)$ and $(u_a - u_w)$ to Formulate<br>Constitutive Relations                                | 358 |
|            | 12.4 | Experime<br>Constituti                                    | 360                                                                                                             |     |
|            |      | 12.4.1                                                    | Sign Convention for Volumetric Deformation<br>Properties                                                        | 361 |
|            |      | 12.4.2                                                    | Verification of Uniqueness of the Constitutive<br>Surfaces Using Small Stress Changes                           | 361 |
|            |      | 12.4.3                                                    | Verification of the Constitutive Surfaces Using<br>Large Stress State Variable Changes                          | 363 |
|            | 12.5 | Relationship Among Volumetric Deformation<br>Coefficients |                                                                                                                 | 365 |
|            |      | 12.5.1                                                    | Relationship of Volumetric Deformation<br>Coefficients for the Void Ratio and Water<br>Content Surfaces         | 366 |
|            |      | 12.5.2                                                    | Relationship of Volumetric Deformation<br>Coefficients for the Volume-Mass Form of<br>the Constitutive Surfaces | 367 |
|            |      | 12.5.3                                                    | Laboratory Tests Used for Obtaining<br>Volumetric Deformation Coefficients                                      | 367 |
|            |      | 12.5.4                                                    | Relationship of Volumetric Deformation<br>Coefficients for Unloading Surfaces                                   | 369 |
|            |      | 12.5.5                                                    | Relationship of Volumetric Deformation<br>Coefficients for Loading and Unloading<br>Surfaces                    | 370 |
|            |      | 12.5.6                                                    | Constitutive Surfaces on a Semi-Logarithmic<br>Plot                                                             | 370 |
|            |      |                                                           |                                                                                                                 |     |

| CHAPTER 13 | Measurements of Volume Change Indices | 374 |
|------------|---------------------------------------|-----|
|            | 13.1 Literature Review                | 374 |
|            | 13.2 Test Procedures and Equipments   | 376 |
|            | 13.2.1 Loading Constitutive Surfaces  | 377 |
|            | Oedometer tests                       | 378 |
|            | Pressure plate drying tests           | 379 |
|            | Shrinkage tests                       | 380 |

|            | Determination of volume change indices                                                                           | 380        |  |
|------------|------------------------------------------------------------------------------------------------------------------|------------|--|
|            | Determination of volume change indices<br>associated with the transition plane                                   | 382        |  |
|            | Typical results from pressure plate tests                                                                        | 386        |  |
|            | Determination of in situ stress state using<br>oedometer test results                                            | 388        |  |
|            | "Constant volume" test                                                                                           | 388        |  |
|            | "Free-swell" test                                                                                                | 389        |  |
|            | Correction for the compressibility of the<br>apparatus                                                           | 389        |  |
|            | Correction for sampling disturbance                                                                              | 390        |  |
|            | 13.2.2 Unloading Constitutive Surfaces                                                                           | 392        |  |
|            | Unloading tests after compression                                                                                | 392        |  |
|            | Pressure plate wetting tests                                                                                     | 393        |  |
|            | Free-swell tests                                                                                                 | 394        |  |
|            | Determination of volume change indices                                                                           | 395        |  |
| CHAPTER 14 | Volume Change Predictions                                                                                        |            |  |
|            | 14.1 Literature Review                                                                                           | 397        |  |
|            | 14.1.1 Factors Affecting Total Heave                                                                             | 401        |  |
|            | 14.2 Past, Present, and Future States of Stress                                                                  | 403        |  |
|            | 14.2.1 Stress State History                                                                                      | 404        |  |
|            | 14.2.2 In Situ Stress State                                                                                      | 405        |  |
|            | 14.2.3 Future Stress State and Ground Movements                                                                  | 406        |  |
|            | 14.3 Theory of Heave Predictions                                                                                 | 406        |  |
|            | 14.3.1 Total Heave Formulations                                                                                  | 407        |  |
|            | 14.3.2 Prediction of Final Pore-Water Pressures                                                                  | 408        |  |
|            | 14.3.3 Example of Heave Calculations                                                                             | 408        |  |
|            | 14.3.4 Case Histories                                                                                            | 410        |  |
|            | Slab-on-grade floor, Regina, Saskatchewan                                                                        | 410        |  |
|            | Eston school, Eston, Saskatchewan                                                                                | 411        |  |
|            | 14.4 Control Factors in Heave Prediction and Reduction                                                           | 411        |  |
|            | 14.4.1 Closed-Form Heave Equation when Swelling<br>Pressure is Constant                                          | 412        |  |
|            | 14.4.2 Effect of Correcting the Swelling Pressure on<br>the Prediction of Total Heave                            | 413        |  |
|            | 14.4.3 Example with Wetting from the Top to a Specified Depth                                                    | 414        |  |
|            | 14.4.4 Example with a Portion of the Profile Removed<br>by Excavation and Backfilled with a<br>Nonexpansive Soil | 415        |  |
|            | 14.5 Notes on Collapsible Soils                                                                                  | 417        |  |
| CHAPTER 15 | One-Dimensional Consolidation and Swelling                                                                       |            |  |
|            | 15.1 Literature Review                                                                                           |            |  |
|            | 15.2 Physical Relations Required for the Formulation                                                             | 419<br>420 |  |
|            |                                                                                                                  |            |  |
|            |                                                                                                                  | 422        |  |
|            | 15.3.1 Water Phase Partial Differential Equation                                                                 | 423        |  |
|            | Saturated condition                                                                                              | 424        |  |
|            | Dry soil condition                                                                                               | 424        |  |
|            | Special case of an unsaturated soil condition                                                                    | 424        |  |
|            | 15.3.2 Air Phase Partial Differential Equation                                                                   | 425        |  |
|            | Saturated soil condition                                                                                         | 426        |  |

|            |      |                         | CONTENTS                                                    | xxiii |
|------------|------|-------------------------|-------------------------------------------------------------|-------|
|            |      |                         | Dry soil condition                                          | 426   |
|            |      |                         | Special case of an unsaturated soil                         | 426   |
|            | 15.4 |                         | of Consolidation Equations Using Finite                     | 427   |
|            | 15.5 |                         | onsolidation Test Results for Unsaturated                   | 429   |
|            |      | 15.5.1                  | Tests on Compacted Kaolin                                   | 429   |
|            |      |                         | Presentation of results                                     | 429   |
|            |      |                         | Theoretical analyses                                        | 430   |
|            |      | 15.5.2                  | Tests on Silty Sand                                         | 433   |
|            |      |                         | Presentation of results                                     | 433   |
|            |      |                         | Theoretical analysis                                        | 435   |
|            | 15.6 | Dimensio                | nless Consolidation Parameters                              | 437   |
| CHAPTER 16 |      | - and Thre<br>sothermal | e-Dimensional Unsteady-State Flow and Analyses              | 440   |
|            | 16.1 | Uncouple                | d Two-Dimensional Formulations                              | 440   |
|            |      | 16.1.1                  | Unsteady-State Seepage in Isotropic Soil                    | 440   |
|            |      |                         | Water phase partial differential equation                   | 441   |
|            |      |                         | Air phase partial differential equation                     | 441   |
|            |      | 16.1.2                  | Unsteady-State Seepage in an Anisotropic Soil               | 441   |
|            |      |                         | Anisotropy in permeability                                  | 442   |
|            |      |                         | Water phase partial differential equation                   | 443   |
|            |      |                         | Seepage analysis using the finite element method            | 444   |
|            |      |                         | Examples of two-dimensional problems and their solutions    | 447   |
|            |      |                         | Example of water flow through an earth dam                  | 447   |
|            |      |                         | Example of groundwater seepage below a lagoon               | 447   |
|            |      |                         | Example of seepage within a layered hill slope              | 449   |
|            | 16.2 | Coupled I<br>Consolida  | Formulations of Three-Dimensional ation                     | 456   |
|            |      | 16.2.1                  | Constitutive Relations                                      | 456   |
|            |      |                         | Soil structure                                              | 461   |
|            |      |                         | Water phase                                                 | 463   |
|            |      |                         | Air phase                                                   | 472   |
|            |      | 16.2.2                  | Coupled Consolidation Equations                             | 472   |
|            |      |                         | Equilibrium equations                                       | 472   |
|            |      |                         | Water phase continuity                                      | 473   |
|            |      |                         | Air phase continuity                                        | 473   |
|            | 16.3 | Nonisothe               | ermal Flow                                                  | 473   |
|            |      | 16.3.1                  | Air Phase Partial Differential Equation                     | 47:   |
|            |      | 16.3.2                  | Fluid and Vapor Flow Equation for the Water<br>Phase        | 474   |
|            |      | 16.3.3                  | Heat Flow Equation                                          | 474   |
|            |      | 16.3.4                  | Atmospheric Boundary Conditions                             | 47:   |
|            |      |                         | Surface boundary conditions for air and<br>fluid water flow | 47:   |
|            |      |                         | Surface boundary conditions for water vapor<br>flow         | 47:   |
|            |      |                         | Surface boundary conditions for heat flow                   | 47    |

| XXIV CONTENTS |                                                                             |     |
|---------------|-----------------------------------------------------------------------------|-----|
| APPENDIX A    | Units and Symbols                                                           | 479 |
| APPENDIX B    | Theoretical Justification for Stress State Variables                        | 483 |
|               | B.1 Equilibrium Equations for Unsaturated Soils                             | 483 |
|               | B.2 Total or Overall Equilibrium                                            | 483 |
|               | B.3 Independent Phase Equilibrium                                           | 484 |
|               | B.3.1 Water Phase Equilibrium                                               | 485 |
|               | B.3.2 Air Phase Equilibrium                                                 | 485 |
|               | B.3.3 Contractile Skin Equilibrium                                          | 485 |
|               | B.4 Equilibrium of the Soil Structure (i.e., Arrangement of Soil Particles) | 488 |
|               | B.5 Other Combinations of Stress State Variables                            | 489 |
|               | References                                                                  | 490 |
|               | About the Authors                                                           | 508 |
|               | Index                                                                       | 510 |
|               |                                                                             |     |