SERIES IN SOIL ENGINEERING

Edited by

T. William Lambe Robert V. Whitman Professors of Civil Engineering Massachusetts Institute of Technology

BOOKS IN SERIES:

Soil Testing for Engineers by William T. Lambe, 1951
Soil Mechanics by T. William Lambe and Robert V. Whitman, 1968
Elastic Solutions for Soil and Rock Mechanics by H. G. Poulos and E. H. Davis, 1974

Fundamentals of Soil Behavior by James K. Mitchell, 1976 Soil Dynamics by Robert V. Whitman (in progress)

The aim of this series is to present the modern concepts of soil engineering, which is the science and technology of soils and their application to problems in civil engineering. The word "soil" is interpreted broadly to include all earth materials whose properties and behavior influence civil engineering construction.

Soil engineering is founded upon many basic disciplines: mechanics and dynamics; physical geology and engineering geology; clay mineralogy and colloidal chemistry; and mechanics of granular systems and fluid mechanics. Principles from these basic disciplines are backed by experimental evidence from laboratory and field investigations and from observations on actual structures. Judgment derived from experience and engineering economics are central to soil engineering.

The books in this series are intended primarily for use in university courses, at both the undergraduate and graduate levels. The editors also expect that all of the books will serve as valuable reference material for practicing engineers.

T. William Lambe and Robert V. Whitman

Fundamentals of Soil Behavior

James K. Mitchell

University of California, Berkeley

1976

John Wiley & Sons, Inc.

New York

London

Sydney

subla

Toronto

177

Copyright (C) 1976 by John Wilcy & Sons, Inc.

All rights reserved. Published simultaneously in Canada.

No part of this book may be reproduced by any means, nor transmitted, nor translated into a machine language without the written permission of the publisher.

Library of Congress Cataloging in Publication Data: Mitchell, James Kenneth, 1930-

Fundamentals of soil behavior.

(Series in soil engineering) Bibliography: p. 1. Soil mechanics. I. Title.

TA710.M577 624'.1513 75-28096 ISBN 0-471-61168-9

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

Board of Advisors, Engineering

A. H-S. Ang University of Illinois	Civil Engineering—Systems and Probability
Donald S. Berry Northwestern University	Transportation Engineering
James Gere Stanford University	Civil Engineering and Applied Mechanics
J. Stuart Hunter Princeton University	Engineering Statistics
T. William Lambe	Civil Engineering—Soil Mechanics
R. V. Whitman Massachusetts Institute of Technology	
Perry L. McCarty Stanford University	Environmental Engineering
Don T. Phillips Purdue University	Industrial Engineering
Dale F. Rudd University of Wisconsin	Chemical Engineering
Robert Steidel, Jr. University of California– Berkeley	Mechanical Engineering
Richard N. White Cornell University	Civil Engineering-Structures

CHAPTER 1	Introduction	1
1.1	Civil Engineering, Geotechnical Engineering, and Soil Behavior, Perspective	1
1.2	Scope and Organization	2
PART I	The Nature of Soils	
CHAPTER 2	Bonding, Crystal Structure, and Surface Characteristics	7
2.1	Introduction	7
2.2	Atomic Structure	7
2.3	Interatomic Bonding	10
2.4	Secondary Bonds	11
2.5	Crystals and Their Properties	13
2.6	Crystal Notation	15
2.7	Factors Controlling Crystal Structure	18
2.8	Silicate Crystals	21
2.9	Surfaces	22
2.10	Practical Implications	23
	Suggestions for Further Study	23
CHAPTER 3	Soil Mineralogy	24
3.7	Introduction	24
3.2	Nonclay Minerals in Soils	25
		ix

x	CONTENTS

	3.3	Structural Units of the Layer Silicates	27
	3.4	Classification of Clay Minerals	31
	3.5	Intersheet and Interlayer Bonding in the Clay Minerals	32
	3.6	The 1:1 Minerals	33
	3.7	The Smectite Minerals	36
	3.8	The Mica-like Clay Minerals	39
	3.9	The Chlorite Minerals	42
	3.10	Chain Structure Clay Minerals	42
	3.11	Summary of Clay Mineral Characteristics	42
	3.12	Mixed Layer Clays	43
	3.13	Noncrystalline Clay Materials	43
	3.14	Origin of Clay Minerals	43
	3.15	Practical Implications	43
		Suggestions for Further Study	46
CHAPTE	R 4	Soil Formation and Soil Deposits	47
	4.1	Introduction	47
	4.2	The Geologic Cycle	47
	4.3	The Earth's Crust	48
	4.4	Rock and Mineral Stability	48
	4.5	Weathering	49
	4.6	Clay Genesis by Weathering	53
	4.7	Soil Profiles and Their Development	54
	4.8	Surficial Soils	54
	4.9	Great Soil Groups	57
	4.10	Sediment Erosion, Transport, and Deposition	60
	4.11	Alluvial Deposits	68

		CONI	ENIS AI
	4.12	Aeolian Deposits	69
	4.13	Glacial Deposits	69
	4.14	Marine Sediments	73
	4.15	Chemical and Biological Deposits	75
	4.16	Collapsing Soils	76
	4.17	Postdepositional Changes in Sediments	79
	4.18	Practical Implications	83
		Suggestions for Further Study	83
CHAR	PTER 5	Determination of Soil Composition	84
	5.1	Introduction	84
	5.2	Methods for Compositional Analysis	84
	5.3	Accuracy of Compositional Analysis	84
	5.4	General Scheme for Compositional Analysis	85
	5.5	X-Ray Diffraction Analysis	87
	5.6	Differential Thermal Analysis	92
	5.7	Optical Microscope Studies of Soil	95
	5.8	Electron Microscopy	95
	5.9	Quantitative Estimation of Soil Components	97
	5.10	Nature of Soil Fines	98
		Suggestions for Further Study	99
CHAI	PTER 6	Soil Water	100
	6.1	Introduction	100
	6.2	The Nature of Ice and Water	100

(11	CONTENTS

6.	3	The Influence of Dissolved Ions	102
6.	4	Possible Mechanisms of Soil-Water Interaction	104
6.	5	Evidence on the Structure and Properties of Adsorbed Water	104
6.	6	Summary and Conclusions	109
6.:	7	Practical Implications	110
		Suggestions for Further Study	111
CHAPTER 7	7	Clay-Water-Electrolyte System	112
7.	1	Introduction	112
7.2	2	Ion Distributions in Clay-Water Systems	112
7.3	3	Double Layer Equations	113
7.4	1	Influences of System Variables on the Double Layer According to the Gouy Theory	118
7.5		Shortcomings of Double Layer Theory and Additional Factors Influencing Behavior	125
7.6	5	Energy and Force of Repulsion	127
7.7	,	Long Range Attraction	127
7.8	3	Net Energy and Force of Interaction	129
7.9)	Cation Exchange—General Considerations	129
7.1	0	Stability of Adsorbed Ion Complexes on Clays	131
7.1	7	Theories for Ion Exchange	131
7.1	2	Anion Exchange	133
7.1	3	Practical Implications	134
		Suggestions for Further Study	134
CHAPTER 8		Soil Fabric and Its Measurement	135
8.1	0	Introduction	135
8.2		Definitions of Fabrics and Fabric Elements	135

		CONTENTS	xm
8.	3 Single Grain Fabrics		139
8.	4 Multigrain Fabrics		146
8.	5 Fabric Determination in Fine-Grained Soils		147
8.0	6 Sample Preparation for Fabric Analysis		151
8.	7 Fabric Study Using the Polarizing Microscope		152
8.	8 Fabric Study Using the Electron Microscope		156
8.	9 Fabric Study by X-Ray Diffraction		158
8.	10 Applications of Transmission X-Ray (Radiograp	ohy)	161
8.	11 Pore Size Distribution Analysis		161
8.	12 Indirect Methods for Fabric Characterization		161
8.	13 Quantification of Fabric		165
8.	14 Practical Applications		166
	Suggestions for Further Study		166

PART II Soil Behavior

CHAPTER 9	Soil Composition and Engineering Properties	169
9.1	Introduction	169
9.2	Approaches to the Study of Composition and Property Inter- relationships	169
9.3	The Dominating Influence of the Clay Phase	170
9.4	Engineering Properties of the Clay Minerals	171
9.5	The Effects of Organic Matter	175
9.6	Atterberg Limits	177
9.7	Activity	179
9.8	Influences of Exchangeable Cations and pH	181
9.9	Shrinkage and Swelling	182

xiv CONT	TENTS		
	9.10	Viscoelastic Behavior	184
	9.11	Practical Implications	184
		Suggestions for Further Study	185
CHAPTE	R 10	Effective, Intergranular, and Total Stress	186
	10.1	Introduction	186
	10.2	The Principle of Effective Stress	186
	10.3	Interparticle Forces	187
	10.4	Intergranular Pressure	189
	10.5	Water Pressures and Potentials	191
	10.6	Water Pressure Equilibrium in Soil	192
	10.7	Measurement of Pore Pressures in Soils	193
	10.8	Effective and Intergranular Pressure	194
	10.9	Assessment of Terzaghi's Equation	195
	10.10	Practical Applications	195
		Suggestions for Further Study	196
CHAPTER	R 11	Soil Structure and Its Stability	197
	11.1	Introduction	197
	11.2	Structure Development	197
	11.3	Sensitivity	208
	11.4	Causes of Sensitivity	209
	11.5	Tunneling Failures and Erosion	218
	11.6	Cation Exchange and Slope Stability	221
		Suggestions for Further Study	221
CHAPTER	x 12	Fabric, Structure, and Property Relationships	222
	12.1	Introduction	222
	12.2	Fabric-Property Interrelationships-Principles	222

		CONTENTS	AV
	12.3	Property Interrelationships in Sensitive Clays	222
	12.4	Fabric and Property Anisotropy	226
	12.5	Fabric, Structure, and Volume Change	237
	12.6	Stress-Deformation and Strength Behavior	240
	12.7	Fabric and Permeability	244
	12.8	Practical Applications	251
		Suggestions for Further Study	251
CHAPTER	R 13	Volume Change Behavior	253
	13.1	Introduction	253
	13.2	General Relationships Between Soil Type, Pressure, and Void Ratio	253
	13.3	Factors Controlling Resistance to Volume Change	255
	13.4	Physical Interactions in Volume Change	257
	13.5	Osmotic Pressure Concept of Volume Change	260
	13.6	Application of Osmotic Pressure Concepts for Description of Volume Change Behavior of Soils	266
	13.7	Importance of Mineralogical Detail in Soil Expansion	269
	13.8	Preconsolidation Pressure and Secondary Compression	272
	13.9	Temperature–Volume Relationships	274
	13.10	Practical Applications	281
		Suggestions for Further Study	282
CHAPTER	R 14	Strength and Deformation Behavior	283
	14.1	Introduction	283
	14.2	General Characteristics	283
	14.3	Soil Deformation as a Rate Process	29:
	14.4	Bonding, Effective Stresses, and Strength	29

XVI	CONTENTS		
	14.5	Shearing Resistance as a Rate Process	303
	14.6	Friction Between Solid Surfaces	305
	14.7	Frictional Behavior of Minerals	310
	14.8	Residual Strength	313
	14.9	The Strength of Granular Soil	316
	14-10	Cohesion	319
	14.11	Creep and Stress Relaxation—General Considerations	320
	14.12	Stress-Strain-Time Functions and Rheological Models	327
	14.13	Creep Rupture	333
	14.14	Conclusion	338
		Suggestions for Further Study	338
CHA	PTER 15	Conduction Phenomena	340
	15.1	Introduction	340
	15.2	Flow Laws and Relationships	340
	15.3	Hydraulic Conductivity	345
	15.4	Electrokinetic Phenomena	353
	15.5	Theories for Electro-Osmosis	354
	15.6	Prediction of Electro-Osmosis Efficiency	359
	15.7	Consolidation by Electro-Osmosis	363
	15.8	Electrochemical Effects	368
	15.9	Chemico-Osmotic Effects in Soils	370
	15.10	Heat Flow Through Soil	373
		Suggestions for Further Study	382
		List of Symbols	384
		Bibliography	387
		Author Index	409
		Subject Index	415

FUNDAMENTALS OF SOIL BEHAVIOR