A WATER RESOURCES TECHNICAL PUBLICATION

A guide to the use of soils as foundations and as construction materials for hydraulic structures

SECOND EDITION 1974

U.S. DEPARTMENT OF THE INTERIOR BUREAU OF RECLAMATION As the Nation's principal conservation agency, the Department of the Interior has responsibility for most of our nationally owned public lands and natural resources. This includes fostering the wisest use of our land and water resources, protecting our fish and wildlife, preserving the environmental and cultural values of our national parks and historical places, and providing for the enjoyment of life through outdoor recreation. The Department assesses our energy and mineral resources and works to assure that their development is in the best interests of all our people. The Department also has a major responsibility for American Indian reservation communities and for people who live in Island Territories under U.S. administration.

UNITED STATES GOVERNMENT PRINTING OFFICE WASHINGTON : 1974

For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402, and the Bureau of Reclamation, Engineering and Research Center, P.O. Box 25007, Denver Federal Center, Denver, Colo. 80225

Price \$13.70 Stock Number 2403-00079

PREFACE TO THE SECOND EDITION

The purposes of the Second Edition remain essentially the same as those which prompted the First Edition, as described in the latter's Preface. Constantly-changing concepts of soil mechanics—as evidenced by new research techniques and ideas, innovations in construction methods and equipment, and computer-generated solutions to previously insurmountable soils-analyses problems—make mandatory this Second Edition. To improve its readability and provide for the new material, the Manual has increased in size as those familiar with the First Edition will recognize.

The contributors to the Manual have held important the need for uniformity in terminology, so that all personnel—field and office alike speak the same language. Much effort has been expended to achieve consistency of terms in the text and the 39 designations or procedures that comprise the appendix. This may be noted especially in the material on soil classification, and methods of logging and reporting; and types and methods of field explorations and investigations, and the tools and equipment required to obtain the desired information.

Although the Manual is primarily geared to the Reclamation organization, engineers and technicians of other governmental agencies, foreign governments, and private firms can, with modifications, utilize the information as a guide to their individual investigations, control of earth construction, and laboratory testing since emphasis is upon practical applications rather than upon complex theory. Users of the Manual should recognize that certain recommendations and values are the result of experience and cannot always be mathematically proved, nor should one attempt to. The Manual has been written as a guide and aid for the construction of a safe and stable structure with utmost concern for the safety of lives.

New material, not covered in the First Edition, includes material on: stabilized soils (soil-cement and asphaltic concrete), more complete information on field investigations and testing equipment in both chapter 2 and designation E-2, an expanded discussion on pipelines, and a newly developed designation, E-39, titled, "Investigations for Rock Sources for Riprap", which describes investigative and reporting procedures. In addition to the conversion factors in the First Edition, conversion curves are included to facilitate the increased utilization of metric units.

Major revisions center on designation E-16, which has been rewritten

and retitled, "Measurement of Capillary Pressures in Soils", and designation E-17, "Triaxial Shear of Soils", which has been rewritten to conform to advanced developments in the procedure. Introduced in E-17 is the "Triaxial Shear Test with Zero Lateral Strain" referred to in modern soil mechanics texts as the K₀-test, which now can easily be performed through the use of the electronic computer.

Since the "Rapid Compaction Control" method, designation E-25, is being used extensively in 35 foreign countries as well as the United States, reorientation of the text material has been made for presenting the material in a manner more readily adaptable to both field and office use. More recently (1970), Australia has been granted permission by the Commissioner, Bureau of Reclamation, to incorporate the "Rapid Compaction Control" method in the Australian standards, "Testing Soils for Engineering Purposes". Designation E-12 has similarly been reoriented for ease in performing the relative density test in cohesionless soils.

Designations E-27 through E-35 covering "Instrument Installations" have been revised and updated to reflect changes in equipment and materials, techniques in installation procedures, and to clarify some of the methods of reading and reporting of data. To be commended are those dedicated field personnel who recognize inconsistencies or problems in the field related to "instruments" and who so often resolve the problems on-the-job. Reflected in these designations are many of their recommendations which have been offered unselfishly.

While environmental and ecological problems are major concerns of the Burcau of Rcclamation, space and time limitations cause exclusion of discussion of views and policies regarding these highly important design considerations. It still remains the responsibility of each planner, investigator, designer, and constructor to consider these problems in his work.

There are occasional references to proprietary materials or products in this publication. These must not be construed as an endorsement since the Bureau cannot endorse proprietary products or processes of manufacturers or the services of commercial firms for advertising, publicity, sales, or other purposes.

Indicative of the monumental task involved in the preparation of this Second Edition is that some 90 persons—engineers, technicians, and those of other disciplines—from the Bureau of Reclamation in its Engineering and Research Center, Denver, Colo., constructively contributed to the content in some measure. The efforts of these people, some of whom are internationally acknowledged, are greatly appreciated.

Special recognition is given to H. J. Gibbs, Chief, Earth Sciences Branch, Division of General Research, and F. J. Davis, Supervisory Civil Engineer, Hydraulic Structures Branch, Division of Design and

PREFACE

Construction, for authoring much of the technical material, for their technical advice, and for their overall guidance. In addition, recognition is made of engineers C. W. Jones, W. Ellis, R. R. Ledzian, G. DeGroot, and P. C. Knodel, and technician R. C. Hatcher, all of the Division of General Research, and engineer W. W. Dachn of the Division of Design and Construction for their major contributions. Because illustrations are invaluable to a publication, recognition must be made to R. E. Glasco and Mrs. H. Fowler for their patience, guidance, and help in obtaining illustrations of the highest quality.

This Second Edition was edited and coordinated, and supplemental technical information and illustrations provided by H. E. Kisselman, general engineer, Technical Services and Publications Branch.

Section	Page
Preface to the Second Edition	iii
Preface to the First Edition	vii

CHAPTER I-PROPERTIES OF SOILS

A. IDENTIFICATION AND CLASSIFICATION

1.	General	1
2.	Soil components	2
	(a) Size	2
	(b) Gradation (Grain-size distribution)	3
	(c) Shape	4
3.	Soil moisture	4
4.	Characteristics of soil components	10
	(a) Gravel and sand	10
	(b) Silt and clay (Fines)	11
	(c) Organic matter	13
5.	Classification of soils	14
	(a) General	14
	(b) Field classification	14
	(c) Laboratory classification	16
6.	Description of soils	17
	(a) General	17
	(b) Borrow materials	17
	(c) Foundations for structures	18
7.	Properties of soil groups	18

B. INDEX PROPERTIES

8.	Definition	22
9.	Gradation	23
	Soil consistency	25
	Porosity and void ratio	28
12.	Specific gravity	29

EARTH	MANUAL
-------	--------

Secti	on	Page
13.	Water content or moisture content	32
14.	Density or unit weight	33
	Penetration resistance	40
	Unconfined compressive strength	42
17.	Soluble salts	43

C. ENGINEERING PROPERTIES

18.		43
19.	Shear strength	44
	(a) General	44
	(b) Direct shear	45
	(c) Triaxial shear	46
	(d) Pore-water pressure	46
	(e) Capillary stresses	48
	(f) Sliding resistance	48
20.	Compressibility	49
	(a) General	49
	(b) Control of compressibility	51
	(c) Load-compression characteristics	53
	(d) Load-expansion characteristics	53
21.	Permeability	55
	(a) Definition	55
	(b) Ranges of permeability	59
	(c) Control of permeability	59
	(d) Determination of permeability values	60
22.	Changes in soil properties	61
23.	Workability	62
24.	Frost action	63

CHAPTER II-INVESTIGATION

A. STAGES OF INVESTIGATION

25.	General	65
26.	Reconnaissance	67
	(a) Objectives	67
	(b) Sizes and depths of investigated areas	67
27.	Feasibility	68
	(a) Objective	68
	(b) Organization of the investigation	69

xii

Secti	on	Page
28.	Specifications	71
	(a) Scope	71
	(b) Programing the exploration	72
	B. PRINCIPLES OF INVESTIGATIONS	
	B. FRINCIPLES OF INVESTIGATIONS	
29.	General	73
	(a) Objectives	73
	(b) Classification of structure foundations	74
30.	Sources of map and photo information	75
	(a) Topographic maps	75
	(b) Geologic maps	77
	(c) Agricultural soil maps	80
	(d) Air photos	84
31.	Surface exploration	87
	(a) General	87
	(b) Fluvial soils	88
	(c) Glacial deposits	92
	(d) Eolian deposits	94
	(e) Residual soils	96
32.	Subsurface exploration	100
	(a) General	100
	(b) Point structures	101
	(c) Line structures	101
	(d) Damsites	106
	(e) Tunnels	106
	(f) Borrow areas	106
	(g) Selection of samples	108
	(h) Field tests	111
33.	Exploration for materials having specific properties	111
	(a) General	111
	(b) Impervious materials	112
	(c) Pervious materials	113
	(d) Riprap and rockfill	115
34.	Materials for stabilized and modified soils	119
	(a) General	119
	(b) Compacted soil-cement	120
	(c) Plastic soil-cement	121
	(d) Asphaltic concrete	121
	(e) Modified soil	121

xiii

xiv

Section

C. EXPLORATORY METHODS

35.	General	122
36.	Test pits, trenches, and tunnels	123
	(a) General	123
	(b) Test pits	124
	(c) Trenches	125
	(d) Tunnels	127
37.	Auger borings	129
38.	Rotary drilling	136
39.	Drive-tube boring	140
40.	Miscellaneous methods	142
	(a) Nonsampling borings	142
	(b) Geophysical methods	142
41.	Field tests	143
	(a) General	143
	(b) Field permeability tests	143
	(c) Field vane test	143
	(d) Inplace density tests	143

D. RECORDING AND REPORTING OF DATA

42.	Maps	144
43.	Logging of exploratory holes	146
	(a) Location of holes	146
	(b) Identification of holes	146
	(c) Log forms	147
	(d) Description of soils	155
	(e) Description of rock cores	155
44.	Subsurface sections	157
45.	Sampling	158
46.	Reports	159

CHAPTER III-CONTROL OF EARTH CONSTRUCTION

A. PRINCIPLES OF CONSTRUCTION CONTROL

47.	Importance of control	165
48.	Organization	166
49.	Specifications	167
50.	Inspection	169

Page

co	N	TE,	N	TS
----	---	-----	---	----

Section	on	Page
51.	Field laboratory facilities	171
52.	Reports	174

B. EARTHWORK

53.	General	176
54.	Embankment	176
	(a) Types of embankment	176
	(b) Dumped fill	176
	(c) Selected fill	177
	(d) Equipment-compacted embankment	178
	(c) Rolled earthfill	178
	(f) Tractor-compacted embankment	179
	(g) Blended earthfill	181
	(h) Modified soil fill	183
	(i) Hydraulic fill	183
55.	Linings and blankets	184
	(a) General	184
	(b) Rock blankets	186
	(c) Sand and gravel or crushed rock blankets	187
	(d) Impervious blankets and linings	189
	(e) Topsoil blankets or zones	189
56.	Backfill	190
	(a) General	190
	(b) Compacted backfill	191
57.	Excavation	191

C. FOUNDATIONS

58.	General	195
59.	Bearing capacity	195
60.	Stability	196
61.	Settlement and uplift	201
	Deterioration	202
63.	Permeability	202
64.	Inadequate foundation conditions	205
	(a) General	205
	(b) Topsoil	206
	(c) Swamp muck	206
	(d) Silt and sand	206
	(e) Talus and spoil piles	211

EARTH	MANUAL
-------	--------

Sect	ion	Page
	(f) Clays	211
	(g) Soft or saturated materials	211
	D ROLLED FARTH DAMS	
	D. ROLLED EARTH BANK	
65.	Foundation treatment	212
	(a) Design features	212
	(b) Specifications provisions	218
	(c) Control techniques	220
66.	Compacted earthfill	221
	(a) Design considerations	221
	(b) Specifications provisions	223
	(c) Control techniques	225
67.	Compacted pervious fill	234
	(a) Design considerations	234
	(b) Specifications provisions	236
	(c) Control techniques	237
68.	Rockfill and riprap	238
69.	Miscellaneous fills	241
70.	Instrument installations	243
	(a) Instruments	243
	(b) Installation of earth dam instrumentation	243
	(c) Inspection	244
	(d) Observations	244
	(e) Record tests	245
71.	Records and reports	247
	(a) Daily reports	247
	(b) Periodic progress reports	249
	(c) Final embankment construction reports	250
	(d) Earth dam instrumentation reports	253
72.	Control criteria	253

E. CANALS

73.	Design features	260
	Specifications provisions	266
	(a) General	26 6
	(b) Subgrades and foundations for embankments and	
	compacted earth lining	266
	(c) Earth embankments and linings	267

xvi

		-
Section		Page
	(d) Riprap, protective blankets, gravel fills, and gravel	
	subbase	269
75.	Control techniques	274
	(a) General	274
	(b) Subgrades and embankment foundations	274
	(c) Earth embankments and linings	278
	F. PIPELINES	
76.	Design features	282
77.	Specifications provisions	283
	(a) General	283
	(b) Pipeline excavation	283
	(c) Backfill in pipe trenches	283
	(d) Compacting backfill in pipe trenches	286
	(e) Compacted backfill for bedding	286
	G. MISCELLANEOUS CONSTRUCTION FEATURES	
78.	Highways and railroads	288
	(a) General	288
	(b) Design features	288
	(c) Earthwork specifications provisions	289
	(d) Control techniques	293
79.	Miscellaneous structures	294
	(a) General	294
	(b) Structure foundations on soil or rock	294
	(c) Pile and caisson foundations	300
	(d) Transmission tower footings	303
	(e) Backfill	304
	(f) Filters	305
	H. STABILIZED SOILS	
80.	General	309
81.	Compacted soil-cement	310
	(a) Design considerations	310
	(b) Construction provisions	310

(b) Construction provisions310(c) Control techniques315(d) Control testing316

xvii

Section	on	Page
82.	Plastic soil-cement	318
83.	Asphaltic concrete	322
	(a) General	322
	(b) Design considerations	322
	(c) Construction provisions	324
	(d) Control testing	325
84.	Modified soil	326

xviii

APPENDIX

Procedures for Sampling, Classification, and Testing of Soils and Installation of Instruments

SAMPLING

Design	ation	Page
E-I	Disturbed sampling of soils	327
E-2	Undisturbed sampling of soils	341

CLASSIFICATION

E3	Visual and laboratory methods for identification and	
	classification of soils	387
E-4	Lists of laboratory equipment	408

LABORATORY TESTS

E-5	Preparation of soil samples for testing	419
E-6	Gradation analysis of soils	424
E7	Soil consistency tests	435
E-8	Soluble salts determination of soils	448
E-9	Moisture determination of soils	450
E-10	Specific gravity of soils, aggregate, and density of irregu- lar blocks of soil	453
E-11	Proctor compaction test (moisture-density relations of soil)	466
E-12	Relative density of cohesionless soils	479
E-13	Permeability and settlement of soils	491
E-14	Permeability and settlement of soil containing gravel	505
E-15	One-dimensional consolidation of soils	509
E-16	Measurement of capillary pressures in soils	521
E-17	Triaxial shear of soils	545

APPENDIX—Continued

Designation

FIELD TESTS

E-18	Field permeability tests in boreholes	573
E-19	Field permeability test (well permeameter method)	578
E-20	Inplace vane shear test	593
E-21	Field penetration test with split-tube sampler	603
E-22	Needle-moisture determination of soils	610
E-23	Field density of dry, gravel-free soils	610
E-24	Field density test procedure	613
E-25	Rapid compaction control	621
E-26	Vertical load-settlement relationship for individual piles	642

INSTRUMENT INSTALLATIONS

E-27	Instructions for installing and reading hydraulic-type twin-tube piezometers in earth dams	650
E-28	Instructions for installing and reading porous-tube pie- zometers	686
E-29	Instructions for installing and reading internal vertical movement devices	699
E-30	Instructions for installing and reading internal horizontal movement devices	719
E-31	Instructions for installing and reading foundation settle- ment apparatus	730
E-32	Instructions for installing and reading measurement points—embankment	733
E-33	Instructions for installing and reading measurement points—concrete structures—outlet works conduits —conduit-type spillways	738
E-34	Instructions for installing and reading measurement points—concrete structures—chute and stilling basin	
	of outlet works-chute-type spillways	741
E35	Recording earthquake vibrations	745
	ADDITIONAL FIFLD AND LABORATORY TESTS	

E-36	Field	permeabili	ty test	(shallow-well	permeameter	
method)						747

Page

APPENDIX—Continued

Designation		Page
E-37	Method for calibrating mechanical laboratory soil com-	
	pactors	755
E-38	Compaction test for soil containing gravel (moisture-	
	density relations)	760
E-39	Investigations for rock sources for riprap	775

Conversion Factors

Some conversion factors commonly used in earth construction _ 782	Some conversion	factors common!	v used in earth	construction _	782
---	-----------------	-----------------	-----------------	----------------	-----

Conversion Curves

Conversion curves to convert inches to centimeters and feet to	
meters	786
Conversion curves to convert gallons to liters and acre-feet to	
cubic meters	787
Conversion curves to convert square feet to square meters and	
acres to hectares	788
Conversion curves to convert second-feet to cubic meters per	
second and miles to kilometers	789

LIST OF FIGURES-Continued

Figur	<i>e</i>	Page
44	Exploration for embankment materials-Location map	
	and section for a typical damsite	109
45	Results of a major blast in a riprap quarry	117
46	Blast test in igneous rock investigated as a source for	
	riprap	117
47	Talus slope of igneous rock proposed for riprap	118
48	Test pit cribbing	125
49	Excavation of hand-dug test pit in borrow area	126
50	Equipment-excavated test pit showing location of samples_	127
51	Trenching, a low-cost method of obtaining soil samples	128
52	Shallow test trench excavated by bulldozer	128
53	Trench in steep abutment area excavated by bulldozer	
	and backhoe	129
54	Exploring a borrow area with a hand auger	130
55	Types of hand augers (2-inch helical, 2- and 6-inch Iwan,	
	and 6-inch Fenn (adjustable))	131
56	Illustration of the helical, disc, and barrel types of	
	machine-driven augers showing basic differences	132
7	Undisturbed sampling with a double-tube helical auger	
	and description of equipment	133
58	Disc auger used to explore borrow areas of fine-grained	
	soils	134
59	Bucket auger used in exploration of a borrow area con-	
	taining gravel particles	135
60	Enclosed auger	135
61	Diamond drill rig used in foundation exploration	137
62	Core barrels used for obtaining samples of rock	138
63	Arrangement of cores in a core box to insure proper	
	identification of samples	139
64	Geologic log of a drill hole	148
65	Log of a hand-dug test pit-For foundation investigation	149
66	Log of a test pit excavated by backhoe—For both borrow	
	and foundation materials investigations	150
67	Log of an auger hole—For borrow materials investigation	151
68	Penetration resistance and drill hole data for subsurface	
	exploration	152
69	Gradation and plasticity data for loessial soils in the	
	Kansas-Nebraska area	156
70	Summary of field and laboratory tests for embankment	
	materials report—Impermeable-type materials	163

xxiv

LIST OF FIGURES---Continued

Figure		Page
71	Summary of field and laboratory tests for embankment	
	materials report—Permeable-type materials	164
72	Examples of floor plans for field control laboratories	172
73	Typical field laboratories	173
74	Large-scale permeability apparatus in a field laboratory	182
75 76	Sluiced backfill in cut-and-cover section of a power tunnel_ Placing a 3-foot blanket of riprap over an 18-inch cobble	185
77	blanket in the tailrace of a powerplant Vibratory consolidation of sand and gravel beneath a	187
78	spillway slab Consolidating backfill about a conduit by means of	192
	internal vibrators	193
79	A deposit of impervious material which overlies a deposit of pervious material	194
80	An example of an arc failure of a natural slope (land- slide) resulting from excessive moisture entering the	
	material	198
81	View of cutoff trench at Davis Dam, Arizona-Nevada	199
82	View of cutoff trench at Twin Buttes Dam, Texas	200
83	View of a typical sinkhole (pothole)	203
84	Portable grout machine used to force a mixture of cement and water into holes drilled in the foundation	204
85	Cracking and settling of canal bank in dry, low-density silt	208
86	Ponding dry foundation of Trenton Dam, Nebraska, to facilitate consolidation	209
87	Criterion for treatment of relatively dry fine-grained	210
0.0	foundations	210
88	Curtain grouting in right abutment of Granby Dam, Colorado	216
89	Temporary diversion channel through Bonny Dam, Colo- rado	218
90	Foundation preparation by washing to remove detrimental air-slaked and loose material at Twin Buttes Dam,	
	Texas	220
91	Power tamping of earthfill at contact with irregular rock abutment	222
92	Separation plant at Meeks Cabin Dam, Wyoming, where impervious material containing oversize was screened	
	into fractions above and below 5 inches	224

xxv