
enelli feud



# AMERICAN SOCIETY OF CIVIL ENGINEERS BOARD OF DIRECTION

President Earle T. Andrews President-Elect Richard H. Tatlow III Past President William J. Hedley Vice Presidents Jewell M. Garrelts Clifford D. Williams Leland J. Walker Charles W. Yoder Directors Daniel B. Barge, Jr. Lloyd T. Cheney Robert H. Dodds Clyde D. Gessel **Richard Hazen** Carl B. Jansen

James L. Konski

Jack E. McKee William W. Moore

H T Person Gardner M. Reynolds A. L. R. Sanders William M. Sangster Robert E. Shaver James R. Sims Horace J. Whitacre James D. Wilson

Longino A. Woodman

**Executive Officers** William H. Wisely, Executive Secretary Don P. Reynolds, Assistant Secretary Donald D. King, Assistant Secretary William P. Kimball, Assistant Secretary-Education William N. Carey, Secretary Emeritus William S. Lalande, Jr., Treasurer

J. Harold Zoller

### COMMITTEE ON PUBLICATIONS

Robert H. Dodds, Chairman H. T. Person, Vice Chairman Carl B. Jansen James L. Konski

A. L. R. Sanders J. Harold Zoller

### SOIL MECHANICS AND FOUNDATIONS DIVISION

**Executive** Committee T. William Lambe, Choirman Frank E. Richart, Jr., Vice Chairman Woodland G. Shockley Richard J. Woodward, Jr. James K. Mitchell, Secretary James D. Wilson, Board Contact Member **Publications** Committee H. Bolton Seed, Chairman Richard G. Ahlvin E. D'Appolonia James M. Duncan W. D. Liam Finn

Bernard G. Gordon David J. Henkel Milton E. Harr Robert L. McNeill Harry M. Horne John S. Schmertmann James K. Mitchell, Exec. Comm. Contact Member

## TECHNICAL PUBLICATIONS

Paul A. Parisi, Manager William D. French, Editor William H. Griffin, Assistant Editor Ann R. Pyk, Assistant Editor Janet B. Davis, Editorial Assistant Barbara Greene, Editorial Assistant Susan E. Salamone, Editorial Assistant Ayra Schegloff, Editorial Assistant ank J. Loeffler, Draftsman

# CONTENTS

| Papers                                                                                                        | Page |
|---------------------------------------------------------------------------------------------------------------|------|
| SHEAR STRENGTH PROPERTIES OF TWO STRATIFIED CLAYS<br>by Kwan Yee Lo and Victor Milligan                       | 1    |
| SUBGRADE STRESS AND DEFORMATION UNDER DYNAMIC LOAD<br>by Stephen F. Brown and Peter S. Pell                   | 17   |
| CYCLIC STRESS CONDITIONS CAUSING LIQUE FACTION OF SAND<br>by Kenneth L. Lee and H. Bolton Seed                | 47   |
| STABILITY OF CLAY AT VERTICAL OPENINGS<br>by Bengt B. Broms and Hans Bennermark                               | 71   |
| FAILURE MECHANISM OF CANAL LINING IN EXPANSIVE CLAY<br>by Gabriel Kassiff, Ariel Etkin, and Joseph G. Zeitlen | 95   |

# DISCUSSION

Proc. Paper 5065

| CONSOLIDATION OF NORMALLY CONSOLIDATED CLAY,<br>by Laing Barden and Peter L. Berry (Sept., 1965. Prior Discussion:<br>Mar., July, 1966).             |     |
|------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| closure                                                                                                                                              | 121 |
| INTERSTITIAL PRESSURES ON ROCK FOUNDATIONS OF DAMS,<br>by J. Laginha Serafim and Alejandro del Campo (Sept., 1965.<br>Prior Discussion: July, 1966). |     |
| closure                                                                                                                                              | 122 |
| (over)                                                                                                                                               |     |

This Journal is published bi-monthly by the American Society of Civil Engineers. Publications office is at 2500 South State Street, Ann Arbor, Michigan, 48104. Editorial and General Offices are at 345 East 47th Street, New York, N. Y. 10017. Subscription price is \$8.00 per year with discounts to members and libraries. Second-class postage paid at Ann Arbor, Michigan. EM, HY, SA, SM, ST.

# Page

| USE OF FREE ENDS IN TRIAXIAL TESTING OF CLAYS, by<br>Laing Barden and Richard J. W. McDermott (Nov., 1965.<br>Prior Discussion: July, 1966).                                                   |                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| closure                                                                                                                                                                                        | 125               |
| SHEAR STRESS AND PORE PRESSURE IN TRIAXIAL TESTING,<br>by G. E. Blight (Nov., 1965. Prior Discussion: July, 1966).<br>closure                                                                  | 125               |
| PORE AIR PRESSURE IN SOIL SUBJECTED TO SHOCK WAVES,<br>by Delon Hampton (Nov., 1965. Prior Discussion: Mar., July, 1966).<br>closure                                                           | 127               |
| BRITISH GROUTING PRACTICE ON GRANULAR SOILS,<br>by William E. Perrott (Nov., 1965. Prior Discussion: July, 1966).<br>closure                                                                   | 128               |
| ALLUVIUM GROUTING PROVED EFFECTIVE ON ALPINE DAM,<br>by Darius Bonazzi (Nov., 1965. Prior Discussion: July, 1966).<br>closure                                                                  | 129               |
| PILING DIFFICULTIES IN THE NEW YORK AREA, by James<br>D. Parsons (Jan., 1966. Prior Discussion: July, 1966).<br>closure                                                                        | 132               |
| LOAD TRANSFER FOR AXIALLY LOADED PILES IN CLAY <sup>a</sup> ,<br>by Harry M. Coyle and Lymon C. Reese (Mar., 1966).<br>by John A. Focht, Jr<br>by Robert L. Lytton<br>by Jose A. Jimenez Salas | 133<br>138<br>141 |
| SAND STIFFNESS UNDER VARIOUS TRIAXIAL STRESSES,<br>by Bobby O. Hardin and William L. Black (Mar., 1966).<br>errata                                                                             | 147               |
| STRESS-DILATANCY PERFORMANCE OF FELDSPAR <sup>a</sup> ,<br>by I. K. Lee (Mar., 1966).<br>by Amir Khavatt                                                                                       | 148               |
| CONTROL OF EARTH AND ROCKFILL FOR OROVILLE DAM <sup>a</sup> ,<br>by Bernard B. Gordon and Robert K. Miller (May, 1966).<br>by F. J. Davis and A. A. Wagner                                     | 151               |
| BEHAVIOR OF A SOIL MASS UNDER DYNAMIC LOADING <sup>a</sup> ,<br>by Robert H. Sparrow and A. Colin Tory (May, 1966).<br>by Delon Hampton                                                        | 153               |
| SURFACE SETTLEMENT ADJACENT TO BRACED OPEN CUTS <sup>a</sup> ,<br>by Marc S. Caspe (July, 1966. Prior Discussion: Nov., 1966).<br>by Edward S. Plotkin                                         | 155               |
|                                                                                                                                                                                                |                   |

<sup>a</sup> Discussion period closed for this paper. Any other discussion received during this period will be published in subsequent Journals.

5056 SHEAR STRENGTH OF STRATIFIED CLAY

KEY WORDS: anisotropy; clay (material); <u>shear strength</u>; <u>slope stability</u>; <u>soil</u> mechanics; strata; stresses; vane test

ABSTRACT: Owing to their intrinsic structure, the undrained strength of stratified clays is a directional property dependent on the orientation of the applied major principal stress. Results of unconfined compression tests performed on specimens trimmed from block samples showed that for the two clays tested, the minimum strengths are considerably lower than the principal strengths. A comparative study demonstrated that the shear behavior of stratified clays are considerably different from those of homogeneous clays. These observations can be explained by a failure hypothesis for stratified clays. The practical implications of these results are examined. The choice of shear strength in slope stability studies is illustrated by the analysis of several case records.

REFERENCE: Lo, Kwan Yee, and Milligan, Victor, "Shear Strength Properties of Two Stratified Clays," Journal of the Soil Mechanics and Foundation Division, ASCE, Vol. 93, No. SM1, Proc. Paper 5056, January, 1967, pp. 1-15.

#### 5057 SUBGRADE STRESS AND DEFORMATION

KEY WORDS: clay (material); dynamic tests; elastic theory; pavements; soil mechanics; strains; stresses; transducers

ABSTRACT: An experimental investigation to determine the complete pattern of dynamic stress, strain, and surface deflections in a clay subgrade material subjected to a uniform surface contact pressure applied over a circular area is described. This is the first stage in a major research project, the aim of which is to obtain comprehensive information on the stress and deformation in a three-layer pavement structure under dynamic load. Details of calibration tests on transducers for measuring <u>in-situ</u> stress and strain are described. Results indicate stresses to be predicted adequately by elastic theory, but that strains, being dependent on the soil stress-strain curve is markedly nonlinear.

REFERENCE: Brown, Stephen F., and Pell, Peter S., "Subgrade Stress and Deformation Under Dynamic Load," Journal of the Soil Mechanics and Foundation Division, ASCE, Vol. 93, No. SM1, Proc. Paper 5057, January, 1967, pp. 17-46.

### 5058 LIQUEFACTION OF SAND BY CYCLIC STRESS

KEY WORDS: cyclic loads; earthquakes; liquefaction; pore-water pressure; sand (material); soil mechanics; soil strength; stresses; testing; triaxial tests

ABSTRACT: Liquefaction of saturated sand was studied using a cyclic loading triaxial test. Quantitative data were obtained providing numerical values for the several important factors necessary to produce liquefaction. Under cyclic loading, four different conditions must be considered; initial liquefaction, partial liquefaction, complete liquefaction, and failure. At relative densities below about 50%, these three conditions occurred almost simultaneously, whereas for relative densities above about 80%, a considerable number of stress cycles were required after initial liquefaction to develop large strains defining a failure condition. There was an approximately linear relationship between the relative density and the stress required to cause initial liquefaction in a given number of cycles. It was also found that the magnitude of cyclic stress required to cause initial liquefactions are presented as to applications of this type of data in predicting the susceptibility of a field deposit to liquefaction to increase.

REFERENCE: Lee, Kenneth L., and Seed, H. Bolton, "Cyclic Stress Conditions Causing Liquefaction of Sand," Journal of the Soil Mechanics and Foundation Division, ASCE, Vol. 93, No. SM1, Proc. Paper 5058, January 1967, pp. 47-70.