

VOL.96 NO.SM6. NOV. 1970

BITCOW R

ASCE

1970

2-R-36

AMERICAN SOCIETY OF CIVIL ENGINEERS BOARD OF DIRECTION

President Samuel S. Baxter President-Elect Oscar S. Bray Post President

Thomas M. Niles Vice Presidents Trent R. Dames

James R. Sims J Directors LeRay Crandall Elwaad D. Dobbs Rabert K. Fogg Ja Llayd C. Fowler Arthur J. Fax, Jr. J E. Monfrod Fucik Frr William R. Gibbs Russel C. Jones Ri Thomas C. Kavanagh Frederick R. Knoop, Jr. Eugene M. Zwayer

Michael N. Salgo James D. Wilson

George J. Kral Arno T. Lenz John T. Merrilield Dan H. Pletta James E. Sawyer Francis B. Sessums Ivan M. Viest Ralph H. Wallace Joseph S. Ward Lauress L. Wise

EXECUTIVE OFFICERS

William H. Wisely, Executive Director Don P. Reynolds, Assistant Executive Director Joseph McCabe, Director—Education Services William N. Carey, Secretary Emeritus William S. Lalonde, Jr., Treasurer Elmer K. Timby, Assistant Treasurer

COMMITTEE ON PUBLICATIONS

Arthur J. Fox, Jr., Chairman James E. Sawyer, Vice Chairman Elwood D. Dobbs Arno T. Lenz Eugene M. Zwayer

SOIL MECHANICS AND FOUNDATIONS DIVISION

Executive Committee James K. Mitchell, Chairman Elia D'Appolonia, Vice Chairman Ray E. Olson, Secretary Jaseph M. DeSalvo Jack W. Hilf

Publications Committee Bramlette McClelland, Chairman Rudy J. Districh William H. Perlaff James M. Duncan Paul Rizza David J. Henkel Ernest T. Selig Harry M. Horn W. G. Shackley Charles C. Ladd E. Vey Robert G. Lukas Raymond Yong

Roy E. Olson, Exec. Comm. Contact Member

TECHNICAL PUBLICATIONS

Paul A. Parisi, Manager Robert D. Walker, Seniar Technical Editor Richard R. Torrens, Technical Editor Irving Amron, Information Editor Lois C. Haimowitz, Senior Editorial Assistant Helen Cohn, Editorial Assistant Patricia B. Conway, Editorial Assistant Mary Ellen Digiusto, Editorial Assistant Kathleen H. Masur, Editorial Assistant Kathleen H. Masur, Editorial Assistant

CONTENTS

INTERNATIONAL ABSTRACTS SECTION by Joseph DeSalvo, Chmn. of Committee on Information Retrieval	2197
Papers	
STABILITY OF CELLULAR COFFERDAMS AGAINST VERTICAL SHEAR	
by Melvin I. Esrig	1853
MECHANISMS CONTROLLING COMPRESSIBILITY OF CLAYS by Roy E. Olson and Gholamreza Mesri	1863
SHEAR STRENGTH AND STABILITY OF MAN-MADE SLOPES by Awtar Singh	1879
SEISMIC RESPONSE OF SOIL DEPOSITS UNDERLAIN BY SLOPING ROCK BOUNDARIES	1000
by Houshang Dezfulian and H. Bolton Seed	1893
EFFECT OF STRAIN HISTORY ON LIQUEFACTION OF SAND by W. D. Liam Finn, Peter L. Bransby, and Dennison J. Pickering	1917
STRENGTH OF MODELS OF ROCK WITH INTERMITTENT JOINTS	
by Edwin T. Brown	1935

(over)

This Journal is published bimonthly by the American Society of Civil Engineers. Publications office is at 345 East 47th Street, New York, N.Y. 10017. Address all ASCE correspondence to the Editorial and General Offices at 345 East 47th Street, New York, N.Y. 10017. Allow six weeks for change of address to become effective. Subscription price is \$10.00 per year with discounts to members and libraries. Secondclass postage paid at New York, N.Y. and at additional mailing offices. EM, SA, SM.

Page

BUCKLING OF FULLY AND PARTIALLY EMBEDDED PILES by A. Siva Reddy and Arun J. Valsangkar	1951
BEARING CAPACITY OF FOOTINGS ON ANISOTROPIC SOILS by A. Siva Reddy and Ramanathan J. Srinivasan	1967
SEISMIC SAFETY OF EARTH DAMS by Tien H. Wu and Leland M. Kraft, Jr.	1987
SELECTION OF CHEMICAL GROUT FOR MATTMARK DAM by Herbert H. Einstein and Gerold Schnitter	2007
STRENGTH OF ANISOTROPICALLY CONSOLIDATED COM- PACTED CLAY by Kenneth L. Lee and Ross A. Morrison	2025
APOLLO 11: SOIL MECHANICS RESULTS by Nicholas C. Costes, William D. Carrier III, James K. Mitchell, and Ronald F. Scott	2045
DEFORMATION AND STABILITY OF VISCOELASTIC SOIL MEDIA by Cetin Soydemir and Werner E. Schmid	2081
ROAD RESPONSES TO VIBRATION TESTS by Michael E. Szendrei and Charles R. Freeme	2099

DISCUSSION

Proc. Paper 7643

SETTLEMENT OF BUILDING ON DEEP COMPRESSIBLE SOIL,	
by Peter J. Moore and Graham K. Spencer (May, 1969. Prior	
Discussions: Mar., May, 1970).	
closure	2127
FIELD STUDIES OF RESPONSE OF PEAT TO PLATE	
LOADING, by James B. Forrest and I. C. MacFarlane (July,	
1969. Prior Discussions: Jan., May, 1970).	
closure	2130

Page

BONDING, EFFECTIVE STRESSES, AND STRENGTH OF SOILS, ^a by James K. Mitchell, Awtar Singh, and Richard G. Campanella (Sept., 1969. Prior Discussions: May, July, 1970). by Sukhmander Singh	2131
BUILDING DAMAGE FROM EXPANSIVE STEEL SLAG BACKFILL, ^a by Carl B. Crawford and Kenneth N. Burn (Nov., 1969. Prior Discussions: July, Sept., 1970). by John P. Gnaedinger and Robert J. Gnaedinger, Jr	2131
HYDRAULIC FILLS TO SUPPORT STRUCTURAL LOADS, ⁴ by Robert V. Whitman (Jan., 1970. Prior Discussions: July, 1970).	0100
by Sergey Steuerman and W. A. Flynn	2133 2135
PRECOMPRESSION FOR IMPROVING FOUNDATION SOILS, ^a by Stanley J. Johnson (Jan., 1970). by Jerome C. Never and Sachinder N. Gupta	2138
GUIDE FOR DEPTH OF FOUNDATION EXPLORATION, ^a by Ronald F. Smith (Mar., 1970).	
by Jean Pierre Giroud by Sachinder N. Gupta	2140 2143
RELAXATION OF PILES IN SAND AND INORGANIC SILT, ^a by Nai C. Yang (Mar., 1970). by Sachinder N. Gunta	2144
BEARING CAPACITY OF FOUNDATIONS ON SAND, ^a by Assad	2111
Abdul- Baki and Lewis A. Beik (Mar., 1970). by Leslie L. Karafiath by Jean Pierre Giroud and Pierre Stutz by George C. Y. Hu	2146 2148 2151
DEVELOPMENT OF FAILURE AROUND EXCAVATED SLOPES, ^a by Peter Dunlop and James M. Duncan (Mar., 1970). by Kenji Ishihara	2152
METHOD FOR PREDICTING INITIAL SETTLEMENT, ^a by David J. D'Appolonia and T. William Lambe (Mar., 1970). by Chandrakant S. Desai	2153
TESTS ON INSTRUMENTED PILES, OGEECHEE RIVER SITE, ^a by Aleksandar Sedmak Vesic (Mar., 1970. Prior Discussion: July, 1970).	
by Arnoldo J. L. Bolognesiby François Tavenas	2155 2157

^a Discussion period closed for this paper. Any other discussion received during this discussion period will be published in subsequent Journals.

Page

SETTLEMENT PROBLEM ORIENTED COMPUTER LANGUAGE, ^a by Robert L. Schiffman, Robert V. Whitman, and Jane C. Jordan (Mar., 1970). by Jean Pierre Giroud	2160
STATE OF PREDICTIVE ART IN SUBSIDENCE ENGINEERING, ^a by Barry Voight and William Pariseau (Mar., 1970. Prior Discussion: Sept., 1970). by R. J. Orchard by Joseph Knecht and George A. Voytko	2162 2163
COMPARISON OF PLANE STRAIN AND TRIAXIAL TESTS ON SAND, ^a by Kenneth L. Lee (May, 1970). by Shunsuke Takagi	2163

TECHNICAL NOTES

Proc. Paper 7646

PARTICLE SIZE DISTRIBUTION OF SOILS by J. MacNeil Turnbull	2171
BEARING CAPACITY OF PARTLY SATURATED SOILS by Annapareddy Siva Reddy and Gavidi Mogaliah	2175
RESIDUAL SHEAR STRENGTH by Peter Smart	2181
TENSILE STRENGTH OF COMPACTED SOILS by Jagdish Narain and Prakash C. Rawat	2185
TRIANGULAR BLANKETS REDUCE EARTHDAM SEEPAGE by Dalim K. Majumdar	2191

INFORMATION RETRIEVAL

The key words, abstract, and reference "cards" for each article in this Journal represent part of the ASCE participation in the EJC information retrieval plan. The retrieval data are placed herein so that each can be cut out, placed on a 3×5 card and given an accession number for the user's file. The accession number is then entered on key word cards so that the user can subsequently match key words to choose the articles he wishes. Details of this program were given in an August, 1962 article in CIVIL ENGINEERING, reprints of which are available on request to ASCE headquarters.

^a Discussion period closed for this paper. Any other discussion received during this discussion period will be published in subsequent Journals.

7654 STABILITY OF CELLULAR COFFERDAMS AGAINST SHEAR

KEY WORDS: <u>bulkheads</u>, <u>cellular cofferdams</u>; cofferdams; friction; <u>re-</u>taining walks; shear failures; sliding; <u>soil mechanics</u>; <u>stability</u>

ABSTRACT: The concept of failure of cellular cofferdams by sliding along vertical planes (vertical shear) is examined in detail. The Terzaghi and Krynine approaches to evaluating stability against vertical shear lead to conclusions that are shown to be contrary to engineering expectations and philosophically difficult to accept. No reasonable failure mechanism that permits sliding along vertical planes is uncovered in the examination. It is suggested that if a measure of stability against failure by vertical shear is desired then the cellular cofferdam should be assumed to fail in simple shear. Failure by simple shear implies a near-vertical failure surface and a ratio of horizontal to vertical stress of unity. However, it is also suggested that it may be better to ignore vertical shear entirely and to validate, with a view to adopting, design procedures proposed by Hansen.

REFERENCE: Esrig, Melvin I., "Stability of Cellular Cofferdams Against Vertical Shear," Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 96, No. SM6, Proc. Paper 7654, November, 1970, pp. 1853-1862.

7649 MECHANISMS CONTROLLING COMPRESSIBILITY OF CLAYS

KEY WORDS: bentonite: clays; compressibility; consolidation; illite; kaolinite; physico-chemical; smectite; soil mechanics

ABSTRACT: The consolidation characteristics of clays are controlled by mechanical and physico-chemical effects. Although these effects operate simultaneously onedimensional consolidation tests indicate that one or the other usually dominates. The consolidation characteristics of sands, mica, and kaolinite are mechanically controlled whereas those of smecific are physico-chemically controlled. Illite occupies an Intermediate position in that the virgin compression curve seems to be controlled by mechanical variables, whereas the swelling curve is influenced by both effects; the physico-chemical effect is more important when the adsorbed cations are monovalent and the pore water electrolyte concentration is low.

REFERENCE: Olson, Roy E., and Mesri, Gholamreza, "Mechanisms Controlling Compressibility of Clays," Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 96, No. SM6, Proc. Paper 7649, November, 1970, pp. 1863-1878,

7652 SHEAR STRENGTH AND STABILITY OF MAN-MADE SLOPES

KEY WORDS: fills; graphic methods; optimization; safety factors; shear strength; slopes; soil mechanics, stability analysis

ABSTRACT: A new method of graphically expressing slope stability analysis in which equal Factor of Safety contours are drawn for a given slope for all values of angle of internal friction and cohesion intercept of the slope material is presented herein. This greatly facilitates the study of the effect of soil strength variation on the stability of such slopes. Recognizing the variability in the values of shear strength parameters due to testing techniques, moisture content changes and the hetrogenity of the solid slope stability computation. Procedures are outlined for optimum economical design of a slope and also for bedding plane failure analysis in multilayered system. Stability charts for balanced factor of safety for man-made slope with b horizontal to 1 vertical for b = 0.5, 0.75, 1.0, 1.5, 2.0, 2.5 and 3.0 are included for all practical value of shear strength parameters. The same charts can be used for cases when a relatively higher margin of safety is required in cohesion or in friction.

REFERENCE: Singh, Awtar, "Shear Strength and Stability of Man-Made Slopes," Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 96, No. SM6, Proc. Paper 7652, November, 1970, pp. 1879-1882.