Groundwater and Seepage

M. E. Harr

Professor of Soil Mechanics School of Civil Engineering, Purdue University

McGRAW-HILL BOOK COMPANY

New York San Francisco Toronto London

GROUNDWATER AND SEEPAGE

Copyright © 1962 by McGraw-Hill, Inc. All Rights Reserved. Printed in the United States of America. This book, or parts thereof, may not be reproduced in any form without permission of the publishers. Library of Congress Catalog Card Number 62-13813

1617181920 VBVB 09876

ISBN 07-026740-5

PREFACE

these general areas is assumed on the part of the reader of this volume. Students have found the study of the mathematical concepts to be particularly rewarding: however, in keeping with an utilitarian philosophy, a conscientious attempt has been made to reduce solutions to simple graphs or charts.

A number of completely worked examples are provided, and over 200 problems of varying degrees of difficulty are included. These range from proofs of a routine nature to practical applications of the text material.

In writing a text of this type there arises the inevitable problem of selection. The author's first impulse was toward the general theory of groundwater and seepage, including both steady and transient states. However, with the growth of the present volume, it was decided to consider only steady-state flow and to defer the transient problem to another volume.

The author wishes to express his gratitude to his friend and colleague Dr. Gerald A. Leonards for his invaluable suggestions and discussions, and to Mrs. J. Becknell for typing the manuscript.

M. E. Harr

Contents

	Preface	vii
	List of Symbols	xiii
СНАР	PTER 1 FUNDAMENTALS OF GROUNDWATER FLOW	1
1-1	Scope and Aim of Subject	1
1-2	Nature of Soil Body	2
1-3	Discharge Velocity and Seepage Velocity	4
1-4	Darcy's Law	4
1-5	Range of Validity of Darcy's Law	6
1-6	Coefficient of Permeability	7
1-7	Capillarity	8
1-8	General Hydrodynamic Equations, Velocity Potential	10
1-9	Two-dimensional Flow, Stream Function	15
1-10	Streamlines and Equipotential Lines	16
1-11	Boundary Conditions	18
1-12	The Flow Net	21
1-13	Seepage Force and Critical Gradient	23
1-14	Anisotropy	26
CHAI	PTER 2 ADDITION OF THE DUPULT THEORY OF	
CIIAI		10
		40
2-1	Basic Considerations	40
2-2	Two-dimensional Flow on a Horizontal Impervious Boundary	42
2-3	Free Surface Subject to Infiltration or Evaporation	43
2-4	Groundwater Flow with an Inclined Lower Impervious Boundary	44
2-5	Pavlovsky's Solution for $i > 0$	47
2-6	Pavlovsky's Solution for $i < 0$	49
2-7	Scenage through an Earth Dam on an Impervious Base	50
2-8	Radial Flow into Completely Penetrating Wells.	57
CHA	PTER 3 CONFORMAL MAPPING BY ELEMENTARY FUNCTIONS	62
3-1	Introduction and Geometrical Representation of $w = f(z)$.	62
3-2	Application of the Mapping Function $z = w^2$	64
3-3	Conformal Manping	69
3-4	Fundamentals of Solution of Two-dimensional Flow Problems by Con-	
	formal Mapping	70

CONTENTS	CO	N	Έŀ	ATS
----------	----	---	----	-----

×

3-5	Linear Mapping Function	71
3-6	Reciprocal Function, $w = 1/z$.	12
3-7	Bilinear Transformation	76
3-8	Upper Hali of z Plane into Unit Circle in w Plane .	77
3-9	The Transformation $w = z^n$	"
CHA	PTER 4 SPECIAL MAPPING TECHNIQUES	81
4-1	Velocity Hodograph	81
4-2	Flow Characteristics at Singular Points of Flow Domain	83
4-3	Examples of Velocity Hodographs	85
4-4	Construction of Solution by Complex Velocity	88
4-5	Zhukovsky Functions	92
4-6	The Schwarz-Christoffel Transformation	93
4-7	Examples of Schwarz-Christoffel Mappings	96
CHAR	PTER 5 CONFINED FLOW	101
E 1	Concred Discussion	101
5-1	Hudraulia Structure on Surface of Infinite Depth of Porous Media	103
52	Indired Sheetnile	111
5.4	Finite Lower Impervious Boundary: General	114
55	Impervious Structure with Sheetnile on Layer of Finite Denth	116
5-6	Heaving and Roofing	124
5-7	Depressed Structure on a Permeable Base of Infinite Extent	128
5-8	Depressed Structure on a Permeable Base of Infinite Extent with Two	
0-0	Symmetrical Bows of Pilings	132
5-9	Double-wall Sheetnile Cofferdam	136
СНА	TER & APPROXIMATE METHODS OF SOLUTION FOR	
CITA	CONTRACT METHODIS OF OSESHOT TOR	1.41
	CONTINED FLOW FROBLEMS	141
6-1	Graphical Flow Net	141
6-2	Solutions by Analogies: Electrical Analogue	142
6-3	The Flow Tank	143
6-4	Viscous Flow Models: Hele-Shaw Model	144
6-5	Relaxation Method	148
6-6	Method of Fragments	151
6-7	Flow in Layered Systems	159
CHAF	PTER 7 UNCONFINED FLOW THROUGH EARTH STRUCTURES ON	
	HOMOGENEOUS FOUNDATIONS OF GREAT DEPTH	168
7-1	General Discussion	168
7-2	Unconfined Flow around Cutoffs	168
7-3	Seepage through Homogeneous Earth Dam with Horizontal Under-	171
7-4	Farth Structure with a Cutoff Wall	175
7-5	Earth Structure with a Cutoff Wall at the Toe	191
7-6	Earth Structure with Horizontal Drain Underlain by Impervious	101
1-0	Material of Infinite Extent	192
7-7	Seenage through Earth Structures into Drains of Finite Length	186
	ro o honger , , ,	100

CONTENTS	xi
CHAPTER 8 UNCONFINED FLOW THROUGH HOMOGENEOUS EARTH STRUCTURES OF FINITE DEPTH	198
 8-1 Introduction 8-2 Solution by Inversion 8-3 Rockfill Dams with Central Cores without Tail Water 8-4 Rockfill Dams with Tail Water 8-5 Seepage through an Earth Dam on an Inclined Impervious Base 8-6 Earth Dam on Impervious Base with Toe Filter 8-7 Seepage through Earth Dam Founded on Layer of Finite Depth with Cutoff Wall 	198 198 200 205 208 210 226
CHAPTER 9 SEEPAGE FROM CANALS AND DITCHES	231
 9-1 Seepage from a Ditch with a Curved Perimeter into a Horizontal Drainage Layer 9-2 Seepage from a Ditch into a Curved Drainage Layer 9-3 Seepage from Ditches of Trapezoidal Shapes 9-4 Seepage from Triangular-shaped Ditches 9-5 Seepage from Ditches into Permeable Layers at Shallow Depths 9-6 Seepage from a Shallow Ditch Considering Capillarity 9-7 Seepage from a Ditch into a Permeable Layer of Finite Length 	231 234 235 240 241 243 243 246
CHAPTER 10 SEEPAGE TOWARD WELLS	249
10-1 Introduction: Fundamental Equations; Sources and Sinks 10-2 Well and Uniform Flow 10-3 Flow between Two Wells of Equal Strength. 10-4 An Eccentrically Placed Well within a Circular Contour 10-5 Influence of the Shape of the Contour on the Discharge 10-6 Interference among Wells 10-7 Partially Penetrating Well in Semi-infinite Media 10-8 Partially Penetrating Well in Layer of Finite Thickness	249 251 252 253 253 255 258 259 262
APPENDIX A	. 265
A-1 Complex Numbers . . A-2 Absolute Values . . A-3 Analytic Functions . . A-4 Elementary Functions of z; Hyperbolic Functions. . . A-5 Complex Integration . . . A-6 Integration around Singular Points; Residues . . .	265 268 269 273 273 275 278
APPENDIX B	. 284
B-1 Elliptic Integrals B-2 Elliptic Integrals of the First Kind B-3 Elliptic Functions; Jacobian Functions B-4 Elliptic Integrals of the Second Kind B-5 Jacobian Zeta Function B-6 Elliptic Integrals of the Third Kind B-7 Gamma and Beta Functions	284 284 287 291 291 291 291 291
References	. 30
Index	. 30