embuell.

Soil Dynamics

Tien Hsing Wu

Professor of Civil Engineering Ohio State University

ALLYN & BACON, INC. Boston, Mass.

MEI YA PUBLICATIONS, INC. Taipei, Taiwan COPYRIGHT © 1971 BY Allyn & Bacon, Inc.

Copyright 1971, in Taiwan, Republic of China by Allyn & Bacon, Inc. Assigned Republic of China Copyright No.

C. SOLAR STORE

All Rights Reserved. This book, or parts thereof, may not be reproduced in any form without permission of the publisher.

FOR SALE IN TAIWAN ONLY; NOT FOR EXPORT

First printing......July, 1971

Reprinted by MEI YA PUBLICATIONS, INC. P. O. Box 22555 Taipei, Taiwan The Republic of China

Contents

Preface ix

Notations xi

1

Stress and Strain 1

- Fundamental Relationships 1.1
- 1.2 Elasticity 4
- 1.3 Viscoelasticity 7
- 1.4 Plasticity 10

2

Dynamic Soil Properties 13

- 2.1 Effective Stress Principal 13 STRAIN RATE EFFECT 15
- 15 Strain-Rate Effect on Pore-Pressure Behavior 2.2 15

1

۷

- 2.3 Strain-Rate Effect on Stress-Strain Relationship
- 2.4 Strain-Rate Effect on Shear Strength . 17 REPEATED LOADING AND VIBRATION 20
- 2.5 Loading Conditions 20
- 2.6 Stress-Strain Relationship 21
- 2.7 Fatigue Failure 22
- 2.8 Soil Compaction by Vibration 26

CONTENTS

3

Wave Propagation in Soils 33

- PRINCIPLES OF WAVE PROPAGATION 33
- 3.1 Elastic Waves in a Bar 33
- 3.2 Elastic Waves in Three Dimensions 39
- 3.3 Rayleigh Waves 42
- 3.4 Viscoelastic Waves in a Bar 44
- 3.5 Plastic Waves in a Bar 46 WAVE PROPAGATION IN SOILS
- 3.6 One-Dimensional Waves 51
- 3.7 Low-Amplitude Waves in Bars 53
- 3.8 High-Amplitude Waves in Bars 57

4

Reflection and Refraction of Waves 63

- 4.1 Measurement of Direct Wave 63
- 4.2 Reflection at Free Surface 66
- 4.3 Reflection and Refraction at Interface 68
- 4.4 Refracted and Reflected Waves in Layered Media 70

50

- 4.5 Refraction Method 72
- 4.6 Reflection Method 76

5

Stress Waves Due to Blast Loading 83

- 5.1 Air-Blast Phenomenon 83
- 5.2 Air-Induced Ground Motion 86
- 5.3 One-Dimensional Stress Wave, Superseismic Case 90
- 5.4 Empirical Attenuation Factor 96
- 5.5 Evaluation of Soil Properties 102
- 5.6 Direct Transmitted Ground Shock 106

6

Vibration of Soils 111

SYSTEMS OF LUMPED PARAMETERS 111

- 6.1 Systems with One Degree of Freedom 112
- 6.2 Systems with Two or More Degrees of Freedom 117
- 6.3 Hysteretic Damping 123 VIBRATION OF SOIL COLUMNS 125
- 6.4 Undamped Vibration 126
- 6.5 Damped Vibration 128
- 6.6 Soil Vibration Experiments 132

CONTENTS

- 6.7 Vibration Properties of Soils 136
- 6.8 Packings of Elastic Spheres 139

7

Foundation Vibrations 143

VIBRATION OF ELASTIC HALF SPACE 143

- 7.1 Vertical Oscillations 143
- 7.2 Horizontal Translation, Rocking and Torsion 155
- 7.3 Oscillator Tests 159

Representation by Lumped Parameter Systems 162

- 7.4 General Relationships 162
- 7.5 Analysis of Foundation Vibrations by Lumped Parameter Systems 166 DESIGN CONSIDERATIONS 171
- 7.6 Design Requirements 172
- 7.7 Characteristics of Dynamic Loads 173
- 7.8 Choice of Lumped Parameters 175
- 7.9 Settlement Under Vibration 179
- 7.10 Vibration of the Free Surface 179
- 7.11 Transient Vibrations 180

8

Dynamic Bearing Capacity and Penetration 195

- 8.1 Penetration into Soil Medium 195
- 8.2 Dynamic Bearing Capacity 197
- 8.3 Impact 205

9

Earthquake Problems 219

- 9.1 Earthquake Phenomenon 219 EARTHQUAKE INDUCED MOTIONS 223
- 9.2 Aperiodic Motion 223
- 9.3 Ground Vibration 228
- 9.4 Ground Effects on Building Vibration 232
- 9.5 Vibration of Embankments 238
- DESIGN CONSIDERATIONS 243
- 9.6 General Principles 243
- 9.7 Ground Deformations 244
- 9.8 Earth Dam Design 245

Bibliography 255

Index 269