Developments in Geotechnical Engineering, 59A

# **Underground Structures**

# **Design and Instrumentation**

Edited by

### R.S. Sinha

U.S. Bureau of Reclamation, P.O. Box 25007, Denver, CO 80225, U.S.A.



ELSEVIER

Amsterdam - Oxford - New York - Tokyo 1989

ELSEVIER SCIENCE PUBLISHERS B.V. Sara Burgerhartstraat 25 P.O. Box 211, 1000 AE Amsterdam, The Netherlands

Distributors for the United States and Canada:

ELSEVIER SCIENCE PUBLISHING COMPANY INC. 655, Avenue of the Americas New York, NY 10010, U.S.A.

#### Library of Congress Cataloging-in-Publication Data

Underground structures : design and instrumentation / edited by R.S. Sinha. p. cm. -- (Developments in geotechnical engineering : 59A) Includes bibliographies and index. ISBN 0-444-07462-3 (U.S.) 1. Underground construction. I. Sinha, R. S. II. Series. TA712.U48 1989 624.1'9--dc20 89-7934 CIP

ISBN 0-444-87462-3 (Vol. 59A) ISBN 0-444-41662-5 (Series)

© Elsevier Science Publishers B.V., 1989

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of the publisher, Elsevier Science Publishers B.V./ Physical Sciences & Engineering Division, P.O. Box 330, 1000 AH Amsterdam, The Netherlands.

Special regulations for readers in the USA – This publication has been registered with the Copyright Clearance Center Inc. (CCC), Salem, Massachusetts. Information can be obtained from the CCC about conditions under which photocopies of parts of this publication may be made in the USA. All other copyright questions, including photocopying outside of the USA, should be referred to the publisher.

No responsibility is assumed by the Publisher for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein.

This book is printed on acid-free paper

Printed in The Netherlands

# CONTENTS

| Dedicati             | ion        |                                           | v   |  |  |
|----------------------|------------|-------------------------------------------|-----|--|--|
| Preface              |            |                                           | VII |  |  |
| list of contributors |            |                                           |     |  |  |
| Selected             | i SI conve | rsion factors                             | x   |  |  |
|                      |            |                                           |     |  |  |
| Chapte               | rl. In     | troduction - Page 1                       |     |  |  |
|                      | 1-1        | General                                   | 1   |  |  |
|                      | 1-2        | Common terms                              | 3   |  |  |
|                      | 1-3        | Planning                                  | 8   |  |  |
|                      | 1-4        | Data collection                           | 8   |  |  |
|                      | 1-5        | Shape                                     | 13  |  |  |
|                      | 1-6        | Size                                      | 14  |  |  |
|                      | 1-7        | Gradient                                  | 15  |  |  |
|                      | 1-8        | Horizontal curves                         | 15  |  |  |
|                      | 1-9        | Vertical curves                           | 15  |  |  |
|                      | 1-10       | Cover requirements                        | 15  |  |  |
|                      | 1-11       | Tunnel hydraulics                         | 16  |  |  |
|                      | 1-12       | Brief historical review                   | 17  |  |  |
|                      | 1-13       | Highlights in the history of tunneling    | 19  |  |  |
|                      | 1-14       | Historic rates in tunneling               | 19  |  |  |
|                      | 1-15       | Famous American tunnels                   | 19  |  |  |
|                      | 1-16       | Some famous tunnels around the world      | 20  |  |  |
|                      | 1-17       | Dimensions of some completed caverns      | 20  |  |  |
|                      | 1-18       | Classifications of underground structures | 20  |  |  |
|                      | 1-19       | Code requirements                         | 22  |  |  |
|                      | 1-20       | System analysis                           | 23  |  |  |
|                      | 1-21       | Tolerances and surface finishes           | 25  |  |  |
|                      | 1-22       | Quantity estimates                        | 26  |  |  |
|                      | 1-23       | Right-of-way                              | 27  |  |  |
|                      | 1-24       | Size of staging area during construction  | 27  |  |  |
|                      | 1-25       | Protection of facilities                  | 28  |  |  |
|                      | 1-26       | Lighting                                  | 29  |  |  |
|                      | 1-27       | Ventilation                               | 29  |  |  |
|                      | 1-28       | References                                | 32  |  |  |
|                      |            |                                           |     |  |  |

| · • • | -  | • |
|-------|----|---|
| А.    | L. | Ŀ |

Cha

| Chapter | 2. De | esign Methods - Page 33                         |    |
|---------|-------|-------------------------------------------------|----|
|         | 2-1   | General .                                       | 33 |
|         | 2-2   | Functional requirements                         | 34 |
|         | 2-3   | Loading                                         | 35 |
|         | 2-4   | Terzaghi's rock load                            | 38 |
|         | 2-5   | The "Q" system                                  | 41 |
|         |       | 2-5.1 Empirical design method, "The Q System"   | 46 |
|         | 2-6   | Rock structure rating                           | 57 |
|         |       | 2-6.1 Empirical design, rock structure rating   | 59 |
|         | 2-7   | Empirical design, rock mechanics rating         | 61 |
|         | 2-8   | Evaluation of empirical design approaches       | 64 |
|         | 2-9   | Rational methods of design                      | 65 |
|         |       | 2-9.1 In situ stresses                          | 65 |
|         |       | 2-9.2 Stresses and strains                      | 67 |
|         |       | 2-9.3 Plastic zone created due to opening       | 71 |
|         | 2-10  | Flexibility and stiffness methods               | 75 |
|         | 2-11  | Convergence-confinement method                  | 77 |
|         | 2-12  | NATM method                                     | 80 |
|         | 2-13  | Discontinuity analysis method                   | 81 |
|         | 2-14  | Numerical methods                               | 82 |
|         | 2-15  | References                                      | 83 |
| Chapter | 3. Nu | merical Methods - Page 84                       |    |
|         | 3-1   | Introduction                                    | 84 |
|         | 3-2   | Computational methods: numerical methods        |    |
|         |       | and their alternatives                          | 84 |
|         |       | 3-2.1 Applicability and comparison of           |    |
|         |       | computational methods                           | 85 |
|         | 3-3   | Applicability and use of numerical methods      |    |
|         |       | to tunnel engineering                           | 85 |
|         |       | 3-3.1 Qualitative analysis                      | 86 |
|         |       | 3-3.2 Quantitative analysis                     | 87 |
|         | 3-4   | Description and comparison of numerical methods | 89 |
|         |       | 3-4.1 Beam element method with elastic support  | 90 |
|         |       | 3-4.2 Finite element method                     | 91 |
|         |       | 3-4.3 Finite difference method                  | 92 |
|         |       | 3-4.4 Boundary element method                   | 94 |
|         |       | 3-4.5 Discrete element method                   | 95 |
|         |       | 3-4.6 Hybrid and complementary methods          | 96 |
|         |       | 3-4.7 Comparison of numerical methods           | 99 |
|         |       |                                                 |    |

|         | 3-5   | Mathematical treatment of numeric  | al                  |     |
|---------|-------|------------------------------------|---------------------|-----|
|         |       | "element methods"                  | 10                  | 1   |
|         |       | 3-5.1 Elements of matrix algebr    | a 10                | 1   |
|         |       | 3-5.2 Mathematical formulation     | in the              |     |
|         |       | finite element method              | 10                  | 3   |
|         |       | 3-5.3 Library of stiffness matr    | ix 10               | 5   |
|         | 3-6   | Modeling for numerical computation | ns 10               | 5   |
|         |       | 3-6.1 Three dimensions simulate    | d by                |     |
|         |       | two-dimensional model              | 10                  | 6   |
|         |       | 3-6.2 Utilization of symmetry      | 10                  | 9   |
|         |       | 3-6.3 Simplified modeling of the   | e subground         |     |
|         |       | and the tunneling process          | 10                  | 9   |
|         | 3-7   | Modeling with the finite element   | method 11           | 0   |
|         |       | 3-7.1 Modeling of the subsurfac    | ce 11               | 0   |
|         |       | 3-7.2 Modeling tunnel advance a    | and construction 11 | 8   |
|         | 3-8   | Model versus measurement           | 12                  | 22  |
|         | 3-9   | References                         | 12                  | 27  |
|         |       |                                    |                     |     |
| Chapter | 4. RC | ck Reinforcement - Page 129        |                     |     |
|         | 4-1   | General                            | 1:                  | 29  |
|         | 4-2   | Rock Reinforcement                 | 1:                  | 30  |
|         |       | 4-2.1 Split set                    | 1:                  | 30  |
|         |       | 4-2.2 Swellex bolts                | 1:                  | 31  |
|         |       | 4-2.3 Cable bolts                  | 1:                  | 32  |
|         |       | 4-2.4 Pumpable rock bolts          | 1.                  | 32  |
|         |       | 4-2.5 Yieldable and flexible r     | ock bolts 1         | 32  |
|         | 4-3   | Types of rock bolts                | 1                   | 33  |
|         | 4-4   | Rock reinforcement installation    | 1                   | 33  |
|         | 4-5   | Parameters of design               | 1                   | 44  |
|         | 4-6   | Design of rock reinforcement       | 1                   | 44  |
|         |       | 4-6.1 Rock bolt suspension the     | ory 1               | 44  |
|         |       | 4-6.2 Rock bolt bending theory     | 1                   | 46  |
|         |       | 4-6.3 Hidden arch theory           | 1                   | 47  |
|         |       | 4-6.4 Rock bolt as equivalent      | support 1           | 50  |
|         |       | 4-6.5 Empirical methods            | 1                   | .50 |
|         |       | 4-6.6 Joint friction approach      | 1                   | 51  |
|         |       | 4-6.7 Internal pressure approa     | ch 1                | 53  |
|         |       | 4-6.8 Reinforced rock unit         |                     | 54  |
|         | 4-7   | Pull out test                      |                     | 155 |
|         | 4-8   | Rock bolt instrumentations         |                     | 155 |
|         | 4_9   | Field observation                  |                     | 157 |
|         |       | i loid observation                 |                     |     |

XIII

| Chanter | 5 110 | deraro  | and Structures in Rock - Page 159       |     |
|---------|-------|---------|-----------------------------------------|-----|
| chapter | 5-1   | Introdu | iction                                  | 159 |
|         | 5-2   | Design  | of indeterminate structures             | 159 |
|         |       | 5-2.1   | Elastic center method                   | 160 |
|         |       | 5-2.2   | Illustrative example                    | 166 |
|         |       | 5-2.3   | Column analogy method                   | 171 |
|         |       | 5-2.4   | Commentary                              | 172 |
|         |       | 5-2.5   | Design of a tunnel by empirical methods | 172 |
|         | 5-3   | Shaft   |                                         | 178 |
|         |       | 5-3.1   | Design of a shaft                       | 181 |
|         |       | 5-3.2   | Model selection                         | 182 |
|         |       | 5-3.3   | Estimation of pressure for shaft        |     |
|         |       |         | lining design                           | 183 |
|         |       | 5-3.4   | Evaluation of stresses                  | 184 |
|         |       | 5-3.5   | Vertical instability                    | 184 |
|         |       | 5-3.6   | Breakdown of cost                       | 185 |
|         | 5-4   | Cavern  |                                         | 186 |
|         |       | 5-4.1   | Analysis and design of cavern           | 187 |
|         |       | 5-4.2   | Closed form solution                    | 188 |
|         |       | 5-4.3   | Block analysis                          | 189 |
|         |       | 5-4.4   | Other models                            | 189 |
|         | 5-5   | Pressur | e tunnels and shafts                    | 189 |
|         |       | 5-5.1   | Pressure tunnels                        | 190 |
|         |       | 5-5.2   | Lining for pressure tunnels             | 191 |
|         |       | 5-5.3   | Cover                                   | 192 |
|         |       | 5-5.4   | Internal and external pressures         | 192 |
|         |       | 5-5.5   | Pressure tunnel design                  | 193 |
|         | 5-6   | Interse | ctions                                  | 198 |
|         | 5-7   | Multipl | e tunnels                               | 200 |
|         | 5-8   | Very la | rge structures                          | 201 |
|         | 5-9   | Referen | ces                                     | 201 |
|         |       |         |                                         |     |
| Chapter | 6. De | sign an | d Analysis of Underground Structures    |     |
|         | ir    | Swell:  | ing and Squeezing Rocks - Page 203      |     |
|         | 6-1   | The phe | nomena                                  | 203 |
|         | 6-2   | Some ca | ses                                     | 204 |
|         | 6-3   | Definit | ion of swelling and squeezing mechanism | 213 |
|         |       | 6-3.1   | Swelling                                | 213 |
|         |       | 6-3.2   | Squeezing                               | 217 |

158

|         |       | 6-3.3   | Combined swelling and squeezing          | 221 |
|---------|-------|---------|------------------------------------------|-----|
|         | 6-4   | Laborat | tory testing for swelling and squeezing  | 222 |
|         |       | 6-4.1   | Swelling tests                           | 222 |
|         |       | 6-4.2   | Tests for squeezing                      | 229 |
|         | 6-5   | Empirio | al and analytical methods for tunnels    |     |
|         |       | in swel | ling and squeezing rock                  | 229 |
|         |       | 6-5.1   | Introduction                             | 229 |
|         |       | 6-5.2   | Empirical methods for swelling           |     |
|         |       |         | and squeezing ground                     | 230 |
|         |       | 6-5.3   | Analytical methods for tunnels           |     |
|         |       |         | in swelling and squeezing ground         | 238 |
|         |       |         | 6-5.3.1 Introductory comments            | 238 |
|         |       |         | 6-5.3.2 Analytical and numerical         |     |
|         |       |         | methods for tunnels                      |     |
|         |       |         | in swelling ground                       | 238 |
|         |       |         | 6.5.3.3 Analytical and numerical         |     |
|         |       |         | methods for squeezing ground             | 248 |
|         |       | 6-5.4   | Analysis of combined swelling and        |     |
|         |       |         | squeezing                                | 250 |
|         |       | 6-5.5   | Concluding comments on the analysis of   |     |
|         |       |         | swelling and squeezing for tunnel design | 250 |
|         | 6-6   | Design  | and construction of tunnels in swelling  |     |
|         |       | and squ | ueezing ground                           | 251 |
|         |       | 6-6.1   | Basic concepts                           | 251 |
|         |       | 6-6.2   | Design and construction of tunnels       |     |
|         |       |         | in swelling ground                       | 251 |
|         |       | 6-6.3   | Design and construction of tunnels       |     |
|         |       |         | in squeezing ground                      | 258 |
|         | 6-7   | Conclu  | sions                                    | 260 |
|         | 6-8   | Refere  | nces                                     | 260 |
| Chapter | 7. Ur | ndergro | und Structures in Rock Burst             |     |
|         | Z     | ones -  | Page 263                                 |     |
|         | 7-1   | Introd  | uction                                   | 263 |
|         | 7-2   | Burst   | mechanism                                | 264 |
|         |       | 7-2.1   | Strain energy                            | 264 |
|         |       | 7-2.2   | Geology                                  | 267 |
|         |       | 7-2.3   | Physical properties                      | 269 |
|         |       | 7-2.4   | Opening design                           | 269 |
|         | 7-3   | Detect  | ion of rock burst-prone areas            | 270 |
|         |       | 7-3.1   | Microgravity method                      | 271 |

# x٧

XVI

|           |       | 7-3.2 Photo elastic method                    | 271    |
|-----------|-------|-----------------------------------------------|--------|
|           |       | 7-3.3 On-site burst detection device          | 272    |
|           |       | 7-3.4 Microseismic method                     | 272    |
|           | 7-4   | Rock burst prevention                         | 272    |
|           |       | 7-4.1 Destressing methods                     | 273    |
|           | 7-5   | References                                    | 274    |
|           |       |                                               |        |
| Chapter 8 | 8. Ur | nderground Structures Through Seismic         |        |
|           | Z     | ones - Page 276                               |        |
|           | 8-1   | Introduction                                  | 276    |
|           | 8-2   | Seismic characteristics                       | 276    |
|           |       | 8-2.1 Size of earthquake                      | 276    |
|           |       | 8-2.2 Intensity and frequency content         |        |
|           |       | of ground motion                              | 277    |
|           |       | 8-2.3 Duration of the strong motion           | 279    |
|           | 8-3   | Effect of ground motion on underground        |        |
|           |       | structures                                    | 279    |
|           | 8-4   | Liquefaction of soils                         | 280    |
|           |       | 8-4.1 Definition                              | 280    |
|           |       | 8-4.2 Geological and geotechnical observation | is 280 |
|           |       | 8-4.3 Simplified analysis                     | 280    |
|           | 8-5   | Seismic design of underground structures      | 284    |
|           |       | 8-5.1 Underground structures in soil          | 284    |
|           |       | 8-5.2 Special considerations in design        | 285    |
|           |       | 8-5.3 Underground structures in rock          | 286    |
|           | 8-6   | Analysis of underground structures            | 286    |
|           |       | 8-6.1 Axial and curvature deformations        | 288    |
|           |       | 8-6.2 Hoop deformations                       | 289    |
|           | 8-7   | Available numerical models                    | 290    |
|           |       | 8-7.1 Computer programs for dynamic analysis  | 292    |
|           |       | 8-7.2 Recommended procedures                  | 293    |
|           | 8-8   | References                                    | 294    |
|           |       |                                               |        |
| Chapter 9 | . sh  | notcrete for Support of Underground           |        |
|           | O     | penings - Page 295                            |        |
|           | 9-1   | General                                       | 295    |
|           | 9-2   | Introduction                                  | 295    |
|           | 9-3   | Rock loads                                    | 296    |
|           |       | 9-3.1 Terzaghi, Barton and Bieniawski         | 296    |
|           |       | 9-3.2 Voegele and Goodman computer models     | 297    |
|           |       | 9-3 3 Tom Lang's bucket and bair not          | 208    |

|   |        | 9-3.4   | Time dependent rock loads                  | 298 |
|---|--------|---------|--------------------------------------------|-----|
|   | 9-4    | Constru | ction of underground openings              | 299 |
|   |        | 9-4.1   | Construction using drill+blast             | 299 |
|   |        | 9-4.2   | Construction using roadheaders             | 299 |
|   |        | 9-4.3   | Construction using a TBM                   | 300 |
|   |        | 9-4.4   | Construction problems                      | 301 |
|   | 9-5    | Shotcre | te design                                  | 302 |
|   |        | 9-5.1   | Time dependent properties of shotcrete     | 302 |
|   |        | 9-5.2   | Rebound                                    | 303 |
|   |        | 9-5.3   | Mix design                                 | 303 |
|   |        | 9-5.4   | Layer thickness                            | 304 |
|   |        | 9-5.5   | Welded wire fabric                         | 304 |
|   |        | 9-5.6   | Shotcrete in soft ground; squeezing        |     |
|   |        |         | on swelling ground                         | 304 |
|   |        | 9-5.7   | Shotcrete incompatibility with timber      |     |
|   |        |         | lagging                                    | 305 |
|   |        | 9-5.8   | Basic design procedure                     | 305 |
|   | 9-6    | Steel-f | fiber-reinforced shotcrete and microsilica | 307 |
|   |        | 9-6.1   | Steel-fiber-reinforced shotcrete           | 307 |
|   |        | 9-6.2   | Microsilica                                | 308 |
|   | 9-7    | Practic | cal shotcreting                            | 309 |
|   |        | 9-7.1   | Preconstruction testing                    | 309 |
|   |        | 9-7.2   | Shotcrete equipment                        | 309 |
|   |        | 9-7.3   | The shotcrete crew                         | 311 |
|   |        | 9-7.4   | Shotcrete in soft ground                   | 312 |
|   | 9-8    | Case hi | istory                                     | 313 |
|   |        | 9-8.1   | Excavation with roadheader                 | 313 |
|   |        | 9-8.2   | Shotcreting the first 2-inch layer         | 313 |
|   |        | 9-8.3   | Placing welded wire fabric in crown        |     |
|   |        |         | and walls                                  | 315 |
|   |        | 9-8.4   | Shotcreting the second 2-inch layer        | 315 |
|   | 9-9    | Cost st | tudy                                       | 315 |
|   |        | 9-9.1   | Assumptions and basic data                 | 315 |
|   |        | 9-9.2   | Summary                                    | 317 |
|   | 9-10   | List of | f abbreviations                            | 317 |
|   | 9-11   | Referen | nces                                       | 318 |
|   |        |         |                                            |     |
| 1 | .0. Wa | ter Co  | ntrol - Page 320                           |     |
|   | 10-1   | Introd  | uction                                     | 320 |
|   | 10-2   | Water   | control during construction                | 321 |
|   |        |         |                                            |     |

10-2.1 Problem evaluation

Chapter

XVII

321

XVIII

|           |        | 10-2.2  | Groundwater control methods             |     |
|-----------|--------|---------|-----------------------------------------|-----|
|           |        |         | - An overview                           | 326 |
|           |        | 10-2.3  | Dewatering methods                      | 326 |
|           |        | 10-2.4  | Exclusionary methods                    | 333 |
|           |        | 10-2.5  | Selection of appropriate methods        | 340 |
|           |        | 10-2.6  | Contractual considerations              | 340 |
|           | 10-3   | Minimiz | ing and controlling water infiltration  |     |
|           |        | into co | mpleted tunnels                         | 348 |
|           |        | 10-3.1  | Problem definition                      | 348 |
|           |        | 10-3.2  | Allowable infiltration rates            | 350 |
|           |        | 10-3.3  | An overview of water control            |     |
|           |        |         | in completed tunnels                    | 351 |
|           |        | 10-3.4  | High quality concrete - The primary     |     |
|           |        |         | defense                                 | 355 |
|           |        | 10-3.5  | Waterproofing cut-and-cover tunnels     | 357 |
|           |        | 10-3.6  | Waterproofing bored tunnels             | 364 |
|           |        | 10-3.7  | Waterproofing costs                     | 369 |
|           |        | 10-3.8  | Contractual considerations              | 370 |
|           | 10-4   | Referen | ces                                     | 370 |
|           |        |         |                                         |     |
| Chapter : | 11. In | strumen | tation Page - Page 372                  |     |
|           | 11-1   | Introdu | ction                                   | 372 |
|           | 11-2   | Applica | tions                                   | 373 |
|           |        | 11-2.1  | Initial consideration                   | 373 |
|           | 11-3   | Hardwar | e                                       | 373 |
|           |        | 11-3.1  | Requirements in common                  | 373 |
|           | 11-4   | Tunnel  | instrumentation                         | 376 |
|           |        | 11-4.1  | Initial consideration                   | 376 |
|           |        | 11-4.2  | Convergence measurement                 | 377 |
|           |        | 11-4.3  | Borehole extensometers                  | 383 |
|           |        | 11-4.4  | Borehole inclinometers                  | 387 |
|           |        | 11-4.5  | Other instrumentation                   | 393 |
|           | 11-5   | Instrum | entation case history                   | 393 |
|           |        | 11-5.1  | Case history no. 1 - Libby Dam, Montana | 394 |
|           |        | 11-5.2  | Case history no. 2 - Tehachapi (North)  |     |
|           |        |         | Tunnel, California                      | 395 |
|           |        | 11-5.3  | Case history no. 3 - Cabin Creek pumped |     |
|           |        |         | storage, Colorado                       | 396 |
|           |        | 11-5.4  | Case history no. 4 - Straight Creek     |     |
|           |        |         | Tunnel pilot bore, Colorado             | 398 |
|           |        |         | •                                       |     |

|            |       | 11-5.5 Case history no. 5 - Grand Gulf Nuclear  |     |
|------------|-------|-------------------------------------------------|-----|
|            |       | Station, Mississippi                            | 399 |
|            |       | 11-5.6 Case history no. 6 - Jeffrey Pit, Quebec | 400 |
|            |       | 11-5.7 Case history no. 7 - Vaiont Dam, Venice  | 402 |
|            | 11-6  | Summary and conclusions                         | 404 |
|            | 11-7  | References                                      | 404 |
| Chapter 12 | 2. Tu | nneling in Soft Ground - Page 406               |     |
| -          | 12-1  | Introduction                                    | 406 |
|            | 12-2  | Contrast with ordinary design process           | 408 |
|            | 12-3  | Types of ground                                 | 409 |
|            |       | 12-3.1 Residual soils                           | 410 |
|            |       | 12-3.2 Transported soils                        | 410 |
|            | 12-4  | Tunnel excavations                              | 413 |
|            |       | 12-4.1 Excavation and stand up time             | 413 |
|            |       | 12-4.2 Stability of the tunnel face             | 415 |
|            |       | 12-4.2.1 Cohesionless granular soils            | 417 |
|            |       | 12-4.2.2 Cohesive granular soils                | 418 |
|            |       | 12-4.2.3 Nonswelling stiff to hard clays        | 418 |
|            |       | 12-4.2.4 Soft to stiff saturated clays          | 418 |
|            | 12-5  | The tunnel shield                               | 419 |
|            |       | 12-5.1 General                                  | 419 |
|            |       | 12-5.2 Detail of shield structure               | 422 |
|            |       | 12-5.3 Tunnel boring machines                   | 425 |
|            | 12-6  | Lining design                                   | 425 |
|            |       | 12-6.1 Structural design models                 | 425 |
|            |       | 12-6.2 Design approach                          | 430 |
|            |       | 12-6.3 Flexible linings                         | 432 |
|            |       | 12-6.4 Empirical method                         | 433 |
|            |       | 12-6.5 Relative stiffness approach              | 435 |
|            | 12-7  | Design examples                                 | 435 |
|            | 12-8  | References                                      | 436 |

Index

XIX

460