

Part II

HENRY H. THOMAS

Engineering Consultant, Formerly Deputy Chief Civil Engineer, The Hydro-Electric Commission, Tasmania, Australia

ENEL 20065 BIBLIOTECA CENTRALE

A Wiley - Interscience Publication

JOHN WILEY & SONS

London · New York · Sydney · Toronto

Contents

For	eword	(By Sir William Hudson K.B.E., F.R.S., B.Sc. (F.I.E. Aust.) Formerly Commissioner, The Snow Hydro Electric Authority, Australia	En y A	101 101	, H inti	[01 air	1. 15	ix
Prei	face	Dam Building—A Challenge to the Engineer-	an	A	rt i	or	a	
		Science?	•	•	•	•	•	X1
Intr	oductio	on	•	•	•	•	•	XV11
1	Engin	eering Responsibility						
	1.1 Th	ne Chief Engineer and the Team	•		•	•	•	1
	1.2 Ex	perience and the Computer	•		•	•	•	1
	1.3 Re	sponsibility in New Concepts		•		•	•	1
	1.4 Re	esponsibility—Moral and Legal	•	•		•		2
	1.5 Le	x Romana and Insurance				•	•	2
	1.6 TI	ne Contract	•	•	•	•	•	3
2	Plann	ing						
	2.1 W	ater Resources-National and International						6
	2.2 Re	eservoir Utilization						8
	2.3 Li	fe of a Dam						10
	2.4 E	nvironmental Implications						13
	2.5 M	ulti-disciplinary Approach						29
	2.6 Fi	nance						30
	2.7 C	ontract and Day Labour Construction						31
	2.8 D	ecision Making						32
2	Andid	anta ta Lanza Dame						
3	2 1 C	anaguances of Eailure						35
	22 6.	atistico	•	•	•	•	•	35
	22 50	atistics	•	•	•	Ċ	•	36
	3.3 SC		•	•	•	•	1	37
	5.4 E	kampies		•	·	•	•	5.
4	Loadi	ng and Factor of Safety						
	4.1 St	atic Loading	•	•	•	•	•	55
	4.2 D	ynamic Loading	•	•	•	•	•	58
	4.3 Be	chaviour of Concrete under Complex Loading		•	•	•	•	60
	4.4 L	oad-carrying Capacity of Dams	•	•	•	•	•	62
	4.5 M	odel Representation	•	•	•		•	63
	4.6 Fa	actor of Safety	•	•	•	•	•	64
5	Invest	tigations						
	5.1 P	reliminary Investigation and Reconnaissance						70
	5.2 T	ime and Money for Investigations						74
	5.3 B	asic Concepts						74
	5.4 B	asic Data						75
	5.5 H	eight of Dam						82

	5.6 Selection of Type of Dam										83
	5.7 Deep Outlete and Controlled Filling										95
	5.7 Deep Outlets and Controlled I ming		•	•	•	•	•	·	•	•	96
	5.8 River Diversion	•	•	•	•	•	•	•	•	·	70
6	Hydrology										
	6.1 Hydrology and Meteorology										99
	6.2 Storage Requirements										117
	6 3 Floods										119
	6.4 Freeboard										128
	0.4 Freeboard		•	•	·	·	·				
7	Geology										
	7.1 Regional Geology	•	•	•							139
	7.2 Local Geology										141
	7.3 Recording and Presentation										156
	7.4 Seismic Activity										159
	7.5 Valley Wall Stability										163
	76 Mining										166
	7.7 Materials Investigations			•					-		166
	7.7 Materials investigations	•	•	·	•	·	•		•	•	
8	Foundations										
	8.1 Properties of Rock										170
	8.7 Testing				Ċ	Ċ					176
	0.2 fishing		•	•	•	•	·	•	•	·	182
	8.5 Shung	• •	•	•	•	•	•	•	•	·	100
	8.4 Permeability	• •	•	•	•	•	•	•	•	•	100
	8.5 Foundation Improvement	• •	•	•	•	•	•	•	•	•	197
	8.6 Instrumentation	• •	·	٠	٠	•	·	•	•	·	206
9	Concrete										
	9.1 Basic Requirements										210
	9.2 Constituents										212
	9.3 Concrete Mix Design and Grading										227
	9.4 Physical Properties of Concrete				·			-			228
	9.4 Thysical Troperties of Contracto	• •		•	•	•	•		•	·	232
	9.5 Strength of Concrete	• •	•	•	•	•	•	•	·	•	236
	9.6 Curing	• •	•	•	·	•	•	•	•	•	220
	9.7 Cracking in Concrete	•	•	•	٠	•	٠	•	•	•	237
	9.8 Special Concretes	• •	٠	•	•	•	•	٠	٠	٠	240
0	Gravity Dams										
	10.1 Evolution										245
	10.1 Evolution	•••	•	•	•	•	•	•	•	•	249
	10.2 Design Concepts and Chieffa	• •	•	·	•	•	•	•	•	•	252
		• •	•	•	•	•	•	•	•	•	252
	10.4 Stresses in Gravity Dams	• •	•	•	•	•	•	•	•	•	200
	10.5 Contraction Joints		•	•	•	•	•	•	•	•	260
	10.6 Galleries		•	•	•	•	•	•	•		264
	10.7 Appurtenant Structures					•	-				268
	10.8 Prestressed Gravity Dams										272
	10.9 Special Gravity Dams										278
11	Arch Dama										
											202
		• •	•	•	•	•	•	•	•	•	200
	11.2 Design Concepts and Criteria	• •	•	•	•	•	•	•	•	•	294
	11.3 Valley Shape	• • •	•	•	•	•	•	•	•	•	301
	11.4 Abutments-Stability and Deformal	bili	ty	•	•	•		•	•	•	302
	11.5 Shell Geometry										373
	11.6 Methods of Analysis										320
	11.7 Contraction Joints										333

	11.8 Foundation Treatment	9
	11.9 Prestressing	D
	11.10 Modern Arch Dams	2
12	Buttress Dams	
	12.1 Concrete Slab Deck	4
	12.2 Massive Head Buttress	>
	12.3 Multiple-arch Dam	5
	12.4 Buttresses	9
	12.5 Uplift and Sliding	2
	12.6 Spill-over Buttress Dams	2
	12.7 Prestressing	4
	5	
13	Embankment Dams	
	13.1 Evolution	7
	13.2 Types of Embankment Dam	19
	13.3 Design	31
	13.4 Homogeneous Embankments	33
	13.5 Tailings Dams	96
	13.6 Farth–Rockfill Dams	99
	13.7 Decked Rockfill Dams	17
	13.9 Equination Treatment	10
		17
	13.9 Settlement	+/
14	Snillways	
~ '	14.1 The Handling of Flood Waters	57
	14.2 Uncontrolled Spillways	68
	14.2 Cated Spillways	24
	14.5 Gated Spinways	04
	14.4 Spillway Chutes	00
	14.5 Energy Dissipation	08
15	Flow Through and Over Rockfill	
13	15.1 History	26
		20
	15.2 Experience	20
	15.3 Research and Development	37
	15.4 Conclusions \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	45
16	Construction—General	
	16.1 Economical Construction	48
	16.2 Organization	51
	16.2 Organization	51
	16.3 Decision Making	552
	16.4 Safety	>>2
	16.5 Specifications	554
	16.6 Inspection and Testing	554
	16.7 Plant	555
	16.8 Cost and its Control	556
	16.9 River Diversion	558
17	Construction—Concrete Dams	
	17.1 Preparation of Foundations	581
	17.2 Aggregate Production	587
	17.3 Concrete Production and Handling	592
	17.4 Concrete Placing, Consolidation and Curing	597
	17.5 Clean up of Construction Jointe	603
	17.5 Cican-up of Construction Joints	602
	1/.0 Formwork	003

	17.7 Built-in Items	604						
	17.8 Cooling of Concrete	614						
	17.9 Economical Construction	615						
18	Construction-Embankment Dams							
	18.1 General	621						
	18.2 Foundation Preparation	628						
	18.3 Materials	637						
	18.4 Quarry Development and Haul Roads	645						
	18.5 Material Compaction	646						
	18.6 Earth-Rockfill Dams	656						
	18.7 Decked Rockfill Dams	660						
19	Models							
	19.1 Topography	673						
	19.2 Site Geology	674						
	19.3 Structural Models	683						
	19.4 Hydraulic Models	692						
20	Safety and Surveillance							
	20.1 Reasons for Surveillance and Legislation	701						
	20.2 Safety Legislation	702						
	20.3 Inspection and Monitoring	705						
	20.4 Observations and Instrumentation	710						
21	Renair Strengthening and Raising							
~	21.1 Reasons for Modifications	725						
	21.2 Inadequacy of Spillway	731						
	21.3 Inadequacy of Structure	731						
	21.4 Deterioration of Foundation	745						
	21.5 Raising for Increased Benefits	748						
	The Internet Completion of Low Down (ICOLD)							
22	22.1 The International Commission on Large Dam's (ICOLD)	767						
	22.1 The International Commission	703						
		/00						
Ind	ex	769						

Introduction

A large dam has been defined by the International Commission on Large Dams as either:

- A dam above fifteen metres in height, measured from the lowest portion of the general foundation area to the crest, or
- A dam between ten and fifteen metres in height provided it complies with at least one of the following conditions:
 - (a) the length of crest of the dam to be not less than 500 metres;
 - (b) the capacity of the reservoir formed by the dam to be not less than one million cubic metres;
 - (c) the maximum flood discharge dealt with by the dam to be not less than 2000 cubic metres per second;
 - (d) the dam has specially difficult foundation problems; or
 - (e) the dam is of unusual design.

Although this book has been prepared for application to dams of heights 30 m to 100 m, the text will generally be applicable to smaller dams. On the other hand, any dam exceeding 100 m in height must be considered as unique. Every aspect of its design and construction must be treated as a problem specifically related to that particular site.

At this time in history, when advances in technology are so rapid and when the flow of technical papers is so great, the Engineer should pause and carefully study some of the monumental hydraulic works of the past. He may be surprised how often our forebears adhered to principles now credited to the twentieth century.

A prestige publication was prepared in 1970 by Norman Smith for the Spanish National Committee on Large Dams to mark 'the crossing of the barrier of its 500 completed dams'. Under the title *The Heritage of Spanish Dams*, it presents the history of dam building on the Iberian Peninsula.

It was there that the Romans built some of their finest dams, at least two of which are still performing their useful functions.

The same author covered the world scene with A History of Dams $1971.^{1}$ This provides an intriguing story from 'Sadd-el-Kafara' built south from Cairo between 2950 and 2750 B.C. to dams of the twentieth century.

Possibly the first arch dams were those built by the Romans in the first century A.D. in Northern Italy and Southern France. Ponte Alto arch dam¹ was built some 5 metres high from 1611 to 1613. In 1752 it was raised to 17 m curved to a radius of about 15 m, with a thickness of 4 m. In 1824–5 it was raised to 25 m. In 1847–50 further additions were made to bring it to a height of 33 m. The final stage of 3 m was added in 1887 and the dam still stands at a height of 36 m. It appears reasonable to assume that the original builders selected a good foundation!

In the Australian continent dam building is perforce of the modern era. As a developing country considerable ingenuity was displayed to conserve water at minimum cost. Australia is the world's driest continent and it was very soon after settlement that the incidence of droughts threatened the very existence of the early settlers. Naturally the first dams were of earthfill, often consolidated by the feet of sheep driven back and forth across the dam. Possibly the dams that first provoked world interest were the thin arch dams built in New South Wales at the end of the nineteenth century.² Typical of these are Medlow dam (Fig. 1) and Wollongong dam (Fig. 2). These represented a boldness of approach that is still evident in Australian dam building. Restrictions on capital expenditure both then and now have brought forth considerable originality, not unduly influenced by custom.

Although a history of dam building in Australia has not yet been written, an excellent